

Experimental Measurement of Vapor Pressure over a Condensed Phase

Direct vaporization: Congruent: Ni(s) = Ni(g) Incongruent: $Mo_3Te_4(s) = 3 Mo(s) + 2 Te_2(g)$

Reactive Vaporization: $SiO_2(s) + 2H_2O(g) = Si(OH)_4(g)$

N. Jacobson August 6, 2013

References

- Knudsen Effusion
 - Cater, E. D. (1979) The Effusion Method at Age 69: Current State of the Art. Characterization of High Temperature Vapors and Gases. J. W. Hastie, ed. Washington, U. S. Government Printing Office: 3-38.
 - E. H. Copland and N. S. Jacobson, *Measuring Thermodynamic Properties of Metals* and Alloys with Knudsen Effusion Mass Spectrometry, NASA/TP—2010-216795.
- Transpiration
 - U. Merten and W. E. Bell (1967), *The Transpiration Method* in <u>The Characterization of</u> <u>High Temperature Vapors</u>, J. L. Margrave, ed., Wiley, New York.
 - N. S. Jacobson, E. J. Opila, D. L. Myers, and E. H. Copland (2005), *Thermodynamics of Gas Phase Species in the Si-O-H System*, J. Chem. Thermodynamics 37, 1130-37.
- Boundary Layer Limited Vaporization
 - H. C. Graham and H. H. Davis (1971), Oxidation/Vaporization Kinetics of Cr₂O₃, J. Am. Ceram. Soc. 54[2], 89-93.
- Ambient pressure mass spectrometric sampling
 - C. A. Stearns, F. J. Kohl, G. C. Fryburg, and R. A. Miller (1977), A High Pressure Sampling Modulated Molecular Beam Mass Spectrometric Sampling System, NASA TM 73720.

Vapor Pressure/Thermodynamic Parameter Measurements Employed at GRC

- Knudsen cell: Direct Vaporization; some applicability to Reactive Vaporization
 - Vapors flux can be characterized with mass loss, mass spectrometry, target collection, etc.
- Transpiration: Direct Vaporization and Reactive Vaporization
- Boundary Layer Limited Vaporization: Direct Vaporization and Reactive Vaporization

Vacuum Studies are Based on Knudsen Cell

- Typically 1 cm diameter x 1 cm high with a 1 mm orifice
- Cell orifice diameter must be 10X mean free path—only molecule/wall collisions on escape
- Near equilibrium established in cell
- Vapor effusing from orifice leads to a weight loss (measure wt of cell or collect effusate on target) rate which relates to pressure; vapor can also be analyzed with spectrometer

National Aeronautics and Space Administration

Vacuum Microbalance

Range: to 1800C +, 100 gr, \pm 0.1 mg

Flux (mg/cm^2-sec) to Pressure $J = \frac{P}{\sqrt{2\pi MRT}}$ NASA

Temperature Measurement

- Critical parameter for thermodynamic measurements
- High temperature processes are very sensitive to temperature ~ exp (-E/RT)
- Accurate methods to measure temperature
 - Thermocouple tightly coupled to sample
 - Pyrometer sighting in black body hole with appropriate corrections
- Frequent calibrations
 - ITS-90: Melting of Au (1337.33K), Ag (1234.93K)

Hertz-Knudsen-Langmuir Equation

 Maximum Flux: Hertz-Knudsen-Langmuir (HKL) Equation

$$J = \frac{P}{\sqrt{2\pi MRT}}$$

Μ

M(g)

• P is in units of force/unit area In familiar units:

$$J(\text{mole/cm}^2 - \text{sec}) = \frac{44.32P(\text{atm})}{\sqrt{M(\text{gm/mole})T(\text{K})}}$$

• Valid only in a vacuum or rapidly moving gas.

Knudsen Cell Method: Sample Vapor in near Equilibrium with Condensed Phase

$$J(\text{mole/cm}^2 - \text{sec}) = \frac{44.32P(\text{atm})}{\sqrt{M(\text{gm/mole})T(\text{K})}}$$

Take slope and divide by surface area of orifice for Flux

Sample Data from Vacuum Microbalance

 $Au(\ell) = Au(g)$

$$\frac{\partial \ln K_p}{\partial (\frac{1}{T})} = -\frac{\Delta_{\rm V} H^o}{R}$$

 $\Delta_V H^o = -R^*(-41.399) =$

344.19 kJ/mol

Tables = 346.33 kJ/mol

Checks temperature calibration and instrument operation

Glenn Research Center Knudsen Effusion Mass Spectrometer

Resistance heated cell; single cell flange for this study Cross axis electron impact ionizer; 90° magnetic sector; ion counting detector To 1800C, Pressure to 1 x 10^{-10} bar

Mass Spectrometry: Magnetic Sector

Positive ions accelerated by Voltage:

 $\frac{1}{2}$ mv² = eV

Deflected by magnetic field r = mv/eB

Relation m/e to B

 $m/e = B^2 r^2/2V$

Advantages: Very stable High resolution No mass discrimination

Disadvantages:

Large, expensive Slow scanning rates

From Pasto and Johnson, Organic Structure Determination

Mass Spectrometry: Quadrupole

Form positive ions—as in Magnetic Sector Instrument

RF voltage and DC voltage applied to four rods

Only one m/e passes through poles at a particular DC voltage: "mass filter"

Advantages:

Compact Less \$\$ than Magnetic Sector Sensitive Rapid Scanning

Disadvantages: Lower resolution Mass discrimination

 $\Delta_{\mathbf{V}}H^{o}$

R

Standard Heat of Vaporization Measurement

Stable over several days

Recent Studies

- Thermodynamics of vaporization of $B_2O_3(\ell)$ in a reducing atmosphere
 - Integral molar quantity
 - $B_2 O_3(\ell) = B_2 O_3(g)$
 - $2/3 B_2O_3(\ell) + 4/3 FeB(s) = B_2O_2(g) + 2/3 Fe_2B(s)$
 - Cannot use B—phase separates
 - FeB a convenient reducing agent which mixed well with B₂O₃(I)
- Thermodynamics of a rare earth silicates
 - Partial molar quantity
 - Need to know the thermodynamic activity of silica in the Y_2O_3 - Y_2SiO_5 two phase field.
 - Measurement of partial molar quantity.

1:1:1 FeB:Fe₂B:B₂O₃ Mixture

Analysis of Data: Determine $\Delta_r H_{29815}^o$

• 'Σ Plot' method [Cubicciotti]

$$\Delta \{-(gef_{29815})\} - R\ln(I(i)T) = A + B/T)$$

gef_{29815} = $(G_T^o - H_{29815}^o)/T$

- Plot
$$\Delta \{-(gef_{298.15})\} - R \ln(I(i)T) vs 1/T$$
 Slope = $\Delta_r H_{298.15}^o$

• 'Third Law' method $T[\Delta\{-(gef_{29815})\} - R\ln(K)] = \Delta_r H_{29815}^o$

- Obtain $\Delta_r H^o_{29815}$ for each temperature

 Use experimental Gibbs Energy Functions (gef) [JANAF] preferred over calculated (ab initio methods)

$B_2O_3(g)$ Results: Extract $\Delta_f H_{29815}^o(B_2O_3)$

Selected Studies Investigator/method and reaction	$\Delta_f H_{29815}^o$ kJ/mol—2 nd Law	$\Delta_{f}H^{o}_{29815}$ kJ/mol—3 rd Law	$\Delta_f H^o_{29815}$
Hildenbrand (Torsion) et al [1963] $B_2O_3(I) = B_2O_3(g)$	-825.9	-836.0	
Scheer (Torsion) [1957] $B_2O_3(I) = B_2O_3(g)$	-848.2	-829.2	
Shultz et al. (KEMS/Weight loss) [1978] $B_2O_3(I) = B_2O_3(g)$	-841.3 ± 8.8	-837.9 ± 2.5	
Nguyen et al. (ab initio) [2009] $B_2O_3(g) = 3B(g, doublet) + 2O(g, triplet)$			-830.1
This study (KEMS) [2011] $B_2O_3(I) = B_2O_3(g)$	-843.3 ± 6.6	-823.6 ± 1.0	
This study (ab initio) [2011] $B_2O_3(g) = 3B(g, doublet) + 2O(g, triplet)$			-857.4 ± 17.2
This study (ab initio) [2011] $B_2O_3(g) + 6HF(g) = 2BF_3(g) + 2H_2O(g)$			-831.8±5.3

Within 20 kJ/mol ~ 2% of 840 kJ/mol

$B_2O_2(g)$ Results: Extract $\Delta_f H_{29815}^o(B_2O_2)$

Investigator/method and reaction	$\Delta_f H^o_{29815}$ kJ/mol—2 nd Law	$\Delta_f H_{29815}^o$ kJ/mol—3 rd Law	$\Delta_{f} H^{o}_{29815}$
Inghram (KEMS) [1956] 2/3 B + 2/3 $B_2O_3(I) = B_2O_2(g)$	-509.4	-444.1	
Inghram (KEMS) [1956] 2/3 B + 2/3 $B_2O_3(g) = B_2O_2(g)$	-455.2	-458.7	
Scheer (Torsion) [1958] 2/3 B + 2/3 $B_2O_3(I) = B_2O_2(g)$	-428.6	-462.9	
Rentzepis et al. (Collection) [1960] $C(s) + B_2O_3(I) = B_2O_2(g) + CO(g)$		-466.2	
Searcy and Myers [1957] $2MgO(s) + 2B(s) = 2Mg(g) + B_2O_2(g)$		-458.9	
Nguyen et al. (ab initio) [2009] $B_2O_2(g) = 2B(g, doublet) + 2O(g, triplet)$			-457.7
This study (KEMS) [2011] 4/3 FeB(s) + 2/3 $B_2O_3(I) = B_2O_2(g) + 2/3 Fe_2B(s)$	-484.8 ± 25.7	-474.6 ± 25.7	
This study (ab initio) [2011] $B_2O_2(g) = 2B(g, doublet) + 2O(g, triplet)$			-479.9 ± 17.2
This study (ab initio) [2011] $B_2O_2(g) + 6HF(g) = 2BF_3(g) + 2H_2O(g) + H_2(g)$			-456.7 ± 5.3

Measurement of Silica Activity in Coating Materials: Rare Earth Silicates

National Aeronautics and Space Administration Boundary Layer Limited Gas Transport: Model Silica Ceramic Degradation (Opila)

Flux of Vapor Species (i) = 0.664 (Re)^{0.5} (Sc)^{0.33}
$$\frac{D_i P_i}{RTL}$$

$$= 0.664 \left(\frac{\nu_{\infty}\rho_{\infty}L}{\eta}\right)^{0.5} \left(\frac{\eta}{D_{i}\rho_{\infty}}\right)^{0.33} \frac{D_{i}P_{i}}{RTL}$$

Fluid parameters

Laminar Flow, Expression for turbulent flow similar

National Aeronautics and Space Administration Key Parameters in Boundary Layer Limited Transport Modeling

- \underline{SiO}_2 (pure or in silicate soln) + 2 H₂O(g) = Si(OH)₄(g)
- Combustion environment—always 10-15% water vapor

$$K = \frac{P_{Si(OH)_4}}{a_{SiO_2} (P_{H_2O})^2}$$

$$Flux = 0.664 \left(\frac{v_{\infty}\rho_{\infty}L}{\eta}\right)^{0.5} \left(\frac{\eta}{D_{Si(OH)_4}\rho_{\infty}}\right)^{0.33} \frac{D_{Si(OH)_4}P_{Si(OH)_4}}{RTL} =$$

$$0.664 \left(\frac{\nu_{\infty}\rho_{\infty}L}{\eta}\right)^{0.5} \left(\frac{\eta}{D_{Si(OH)_{4}}\rho_{\infty}}\right)^{0.33} \frac{D_{Si(OH)_{4}}}{RTL} K a_{SiO_{2}} \left(P_{H_{2}O}\right)^{2}$$

- Critical parameters to know are equilibrium constant for hydroxide formation and activity of SiO₂
- Either eliminate SiO₂ or reduce its activity

Environmental Barrier Coatings (EBCs) Developed for Low Thermodynamic Activity of SiO₂ (K. Lee)

• Mullite: Lower than pure silica, but not low enough

• Ba-Sr-aluminosilicate: Low silica activity

• Rare earth silicates: Low silica activity

National Aeronautics and Space Administration Calculated Y₂O₃-SiO₂ Phase Diagram: Fabrichnaya-Seifert Database

Indirect evidence suggests that the SiO_2 thermodynamic activity is low in the Y_2O_3 - Y_2SiO_5 and Y_2SiO_5 - $Y_2Si_2O_7$ regions But there are no direct measurements!

www.nasa.gov 23

Issues with Measuring a(SiO₂) in RE Silicates

- Vapor pressure of SiO₂ too low to measure in temperature range of interest
- Need measurable signal for SiO₂—use reducing agent. Tried several, selected Ta
 - Reaction depends on $a(SiO_2)$ (underline indicates $a(SiO_2) < 1$)
 - Ta + $2\underline{SiO}_2 = 2SiO(g) + TaO_2(g)$
- Excess Ta + Y₂O₃-Y₂SiO₅ + Y₂O₃
 Use Ta cell
- Non-equilibrium vaporization: Need to account for this with the Whitman-Motzfeld extrapolation to zero orifice size

Use Multi-Cell Flange for a(SiO₂)

- Three cells, computer controlled positioning in x-y plane
- Internal temperature calibration
- Internal standard
- Frequent re-calibration, if needed

Design of E. Copland 2002

Approach

- Two cells:
 - One with Au
 - One with $3Ta + Y_2O_3 + Y_2O_3 \cdot SiO_2$
- Based on
 - $Ta + 2\underline{SiO}_2 = 2SiO(g) + TaO_2(g)$

- Measure I(SiO)—convert to P(SiO)
 - $P = kIT/\sigma$ k from Au melting point
 - Need a good σ (SiO)
- Extrapolate to zero orifice size—obtain P_{eq}(SiO)
- Using P_{eq}(SiO) and FactSage (free energy minimization) calculation--determine a(SiO₂) from above reaction

National Aeronautics and Space Administration

Need to Correct for Non-equilibrium Vaporization

- For a Knudsen cell, apply Whitman-Motzfeld extrapolation to zero-orifice size ٠
 - Measure vapor fluxes at different orifice sizes and extrapolate to zero-orifice • size
 - Rate of vaporization = rate of effusion from orifice + rate of condensation ٠
 - Derive •

$$P_{m} = P_{eq} - P_{m} f\left(\frac{1}{\alpha} + \frac{1}{W_{A}} - 2\right)$$

$$P_{m} = \text{Measured pressure}$$

$$P_{eq} = \text{Equilibrium pressure}$$

$$f = W_{B}B/A$$

$$\alpha = \text{evaporation coefficient}$$

$$W_{\rm B}B/A$$

evaporation coefficient
 $P_{measured} = \alpha P_{equilibrium}$

For oxides $\alpha = 10^{-3} - 0.5$ (Searcy)

Plot P_m vs P_m f \Rightarrow intercept is P_{eq} ٠

Calibration Curve for P(SiO) as an Indicator of Silica Activity

Building New KEMS Instrument with Extrel Quad

- Use existing KEMS flanges/furnaces
- On axis ionizer—maximum sensitivity
- Advantages of Quad—sensitivity, rapid mass scans
- Disadvantages of Quad—mass discrimination effects, lower resolution

- Analysis of vapor composition
- Thermodynamic data
- Thermodynamic activity in solutions
- Phase changes
- Isotope measurements
- Gas leak cell for (low pressure) reactive vaporization

Transpiration

Gas mixture enters point A Reacts with solid at C Products collected and analyzed at E B & D—constraints to minimize diffusion and heat loss

Select Flow Rates and Design System to Avoid Diffusion Limitation and Kinetic Limitation

GRC Transpiration System

 $\dot{n}(Ar) = P_1 \dot{V_1} / RT_1 \quad \text{(Point 1 Ar Inlet)}$ $\dot{V_2} = RT_2 (\dot{n}(H_2O) + \dot{n}(Ar)) / P_2 \text{ (Point 2 H}_2O \text{ inlet)}$ $\dot{V_3} = RT_3 (\dot{n}(H_2O) + \dot{n}(Ar) + \dot{n}(Si)) / P_3 \quad \text{(Point 3 reaction cell)}$

$$\dot{n}(Si) << (\dot{n}(H_2O) + \dot{n}(Ar))$$
 $\dot{V}_3 = \dot{V}_2$

 $P(Si) / P(T) = \dot{n}(Si) / (\dot{n}(H_2O) + \dot{n}(Ar) + \dot{n}(Si)) = \dot{n}(Si)RT_3 / \dot{V}_3P_3$

- Calculate dn(Si)/dt from Si collected ⇒ pressure of Si species
- Dependence on water vapor pressure and oxygen pressure gives identity of species

Data for $Si(OH)_4(g)$

FIGURE 4. Plot of the pressure of the Si-containing species against the water vapor at T = 1673 K. The solid line is for data taken with an Ar carrier gas and has a slope of (1.71 ± 0.02) . The dashed line is for data taken with a 10% O₂-Ar carrier gas and has a slope of (1.65 ± 0.06) .

FIGURE 5. Plot of equilibrium constant for the reaction SiO₂(cr) + 2-H₂O(g) = Si(OH)₄(g) as $\lg K_p$ against reciprocal temperature for T < 1375 K. The second law enthalpy derived from this plot is $\Delta_r H^{\circ}(1200 \text{ K}) = (54.6 \pm 2.7) \text{ kJ} \cdot \text{mol}^{-1}$ and entropy change is $\Delta_r S^{\circ}(1200 \text{ K}) = (-67.5 \pm 2.1) \text{ kJ} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.

Boundary Layer Limited Vaporization

- Useful for direct and reactive vaporization
- Have intentional, but known, diffusion limited vaporization
- Useful for approximate vapor pressures, but not accurate thermodynamic data
- Encountered in most applications

National Aeronautics and Space Administration Boundary Layer Limited Gas Transport: Model Silica Ceramic Degradation

Flux of Vapor Species i = 0.664 (Re)^{0.5} (Sc)^{0.33} $\frac{D_i P_i}{RTL}$

$$= 0.664 \left(\frac{\nu_{\infty}\rho_{\infty}L}{\eta}\right)^{0.5} \left(\frac{\eta}{D_{i}\rho_{\infty}}\right)^{0.33} \frac{D_{i}P_{i}}{RTL}$$

Laminar Flow, Expression for turbulent flow similar

Thermogravimetric Apparatus: NASA "Homemade"

Systems Studied: For many of these higher pressures of Water Vapor are Needed

- SiO₂ + 2H₂O(g) = Si(OH)₄(g) (BL Limited; Transpiration) Note: Will not see this species at low pressures of H₂O(g)
- $AI_2O_3 + 3H_2O(g) = AI(OH)_3(g)$ (BL Limited)
- $Cr_2O_3 + H_2O(g) = CrO_2(OH)_2(g)$ (Transpiration)
- $TiO_2 + H_2O(g) = TiO(OH)_2(g)$ (Transpiration)
- $RE_2O_3 + 3H_2O(g) = RE(OH)_3(g)$ (In progress!)

Experimental Data-- Δ_r H(298) (kJ/mol), Δ_r S(298) (J/mol-K) for Reaction from Oxide to Stable Hydroxide/Oxy-hydroxide Reaction based on 1 mole of Solid

Green boxes: Coating Constituents. Studied at GRC: Si-O-H, Cr-O-H, Ti-O-H, Y-O-H (in progress), only ~50 to go!

How do we Identify Vapor Constituents formed at Higher Pressures?

Sampling Mass Spectrometer

- Use the a mass spectrometer to directly sample vapors from a one atmosphere process (Qualitative only!)
 - Flame
 - Deposition process
 - Corrosion process

Free Jet Expansion Preserves Chemical and Dynamic Integrity of Gas

T. A. Miller, Science 223 (4636), 545 (1984)

Analysis of Combustion Products

Flame Chemistry

Experiments also done with seeding flame with corrosive salts, found in combustion environments

Studies of Volatile Hydroxides formed as Corrosion Products in Combustion Environments

- Combustion products always ~10% water vapor
- Water vapor can react with protective oxides

Oxide $(s,I) + H_2O(g) = Hydroxide (g)$ or Oxy-hydroxide (g)

Examples:

 $SiO_2(s) + 2H_2O(g) = Si(OH)_4(g)$

 $SiO_2(s) + H_2O(g) = SiO(OH)_2(g)$

 $\mathsf{AI}_2\mathsf{O}_3(\mathsf{s}) + \mathsf{3H}_2\mathsf{O}(\mathsf{g}) = 2\mathsf{AI}(\mathsf{OH})_3(\mathsf{g})$

• Instrument can directly identify the species, other indirect techniques provide quantitative information on thermodynamics

First Direct Observation of Si(OH)₄(g)

First Direct Observation of AI(OH)₃(g)

AIOHms Sept. 21, 2001 11:07:54 AM

Orbiter Wing Leading Edge Deposits

- HPMS Indicated Zn, NaCl
- Zn from weathering paint on launch structure
- NaCl from coastal environment
- Zn in particular led to pinholes! Implemented launch structure wash.

Summary: Methods used at GRC to Measure Vapor Pressure over Condensed Phases

- Knudsen cell: Molecular beam sampling from a nearly closed chamber. Limited to low pressures
- Transpiration: Downstream sampling of a vapor. Useful at higher pressures.
- Boundary Layer Limited Vaporization: Rapid test. Approximate vapor pressures. Also useful at higher pressures.
- Identify species at higher pressures with sampling mass spectrometer.

Supplemental Material

Boundary Layers: Region of Flow around an Object Affected by that Object (Viscous Drag)

Undisturbed region: v_o or v_∞ = free stream velocity Key Parameter: Reynold's Number (Re) = inertial force/viscous force

 $\begin{pmatrix} \underline{v_{\infty}\rho_{\infty}L} \\ \eta \end{pmatrix} \qquad \begin{array}{l} \eta = \text{viscosity (g/cm-s = poise)} \\ \eta/\rho = \text{kinematic viscosity (cm²/s)} \end{array}$

For our typical conditions $v_{\infty} = 400 \text{ cm}^3/\text{min}^{*1} \text{ min}/60 \text{ s}^{*1}[\pi^{*}(1.8 \text{ cm})^2] = 0.65 \text{ cm/s}$ $\eta = 7 \times 10^{-4} \text{ g/cm-s}$ L = 2 cm $\rho_{\infty} = n/V^*\text{M} = P^*\text{M/RT} = 1^*40/(82.057^*298) = 1.64 \times 10^{-3} \text{ g/cm}^3$ Note that room temperature is used for velocity and density—corrections to temperature (1573K) cancel Re = $(0.65^*1.64^*10^{-3*}2/7^*10^{-4}) = 3.05$ Laminar; Turbulent Re > 2100

Boundary Layer Thickness Calculations

- First Need Gas Phase Diffusivity (cm²/s)
 - Chapman-Enskog correlation

$$D_{12} = \frac{1.8 x 10^{-3}}{\sigma^2 \Omega} \left(\frac{1}{M_1} + \frac{1}{M_2} \right)^{1/2} \left(\frac{T^{3/2}}{P} \right)$$

- $-\sigma$ -average collision diameter (angstroms) from Svehla
- Ω collision integral—first get force constants from Svehla and Ω from Sherwood
- Note T^{3/2} dependence and 1/P dependence
- Generally at 1 atm 1-2 cm²/s
- Calculated for Si(OH)₄(g) in Ar—1.68 cm²/s
- Schmidt Number = viscous momentum transport/diffusion transport
 - $\rho_{\infty} = n/V^*M = P^*M/RT = 1^*40/(82.057^*1573) = 3.10 \times 10^{-4} \text{ g/cm}^3 \text{ (Note now at temperature)}$ $\left(\frac{\eta}{D_i \rho_{\infty}}\right) = (7^*10^{-4}/(1.68^*3.10^{*10^{-4}})) = 1.34$
- Boundary Layer thickness cm

$$\delta = \frac{1.5L}{(\text{Re})^{1/2}(Sc)^{1/3}} = 1.5^{*}2/[(3.05)^{1/2}(1.34)^{1/3}] = 1.56$$

- $\delta \propto (1/P)^{1/2} \ \delta \propto (1/v)^{1/2}$

Thermogravimetric Apparatus

• Commercial Netzsch 409: Weight loss of SiC fiber

