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Outline:

1) What has been found-

1) Planets
1) Characterization Techniques
i) Properties of planets.

2) What our strategy is-
1) Observing
i) Image processing



——BACE A little history

The first extrasolar planet detected was

I|shed in 1992: Wolszczan & Frail detected
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-~ Alittle history
i These r‘)lah'ets'were discovered by usin
variationss the arrival times of the pulsar
pulses

0 _:‘H.

f . o T
% v " L
o HI‘. i iy A
" '
f b
"

h Th|s pulsar has

. a period of 6. 2

~ +« milliseconds

-+ and so arrival

- times can be:
'determlned with
Igljeat accuracy.




The first extrasolar planet around a 'normal’
(main-sequence) star was discovered in 1995
by Swiss astronomers.

The planet has M=O.5MJup. .. and orbits in 4.2

It
days. It was discovered via Doppler shifts in the

host star's spectrum- the RV method

Doppler Shift due to
Stellar Wobble

-9.23




The first extrasolar planet around a 'normal’
(main-sequence) star was discovered in 1995
by Swiss astronomers.

The planet has M=O.5MJup. .. and orbits in 4.2

It
days. It was discovered via Doppler shifts in the

host star's spectrum- the RV method

Doppler Shift due to
Stellar Wobble

-9.23




The RV method used a new technique of observing
through an iodine cell.

BUT... this method only works for bright stars and is
biased towards massive planets in short orbits at
low inclinations, which produce the highest
velocities.

P =T G R G Figure 13.3. lllustration of
M ) - high-precision Doppler

I ' ' ' measurements with an iodine
cell. (a) lodine cell absorption
spectrum. (b) Spectrum of
Procyon. (c) Spectrum of
Procyon with the iodine cell

aj) i
| i I i | 1 i i | Il Il i I L i i | Il
| T | I | I L L] 1 | 1 1 1 I T L 1 I 1
] infront of the spectrograph
1  slit. The relative Doppler shift
i between the iodine and star
_I 1 el Il _] 1 i _I 1 ] Il J 1 ] 1 I 1
| T ) T '| L] T T I ¥ T T | T T T ! T

{

i
—
L]

Relative intensity

L (b) spectra is determined by

i fitting the spectra from

— N - (a) and {b) to the combined
1 ik . spectrum. Figure courtesy

William D. Cochran.
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And this was largely the state of
things tor the next 15 years.
About 300 planets were
discovered.
Improvements in the RV method
detected planets down to about
¢ Earth masses in very short
orbits,



Transits ot a tew (already
known) planets were detected
from Earth,

Planet
Brithness

- fae-
Time




A ftew planets were detected
using microlensing,
These events do **.’Xx

not repeat,

Deviation
due to

Magnification
by stellar
lens

Magnification

< 30 days >




These are all indirect methods:
The planet itselt is not
measured, only its etfect on the
host star,



Direct imaging:
currently works for
ey big planets far from
LD their host stars.

w . ../ Fomalhautbis 2M,
et 1 115 AU from its
"*\'\' host star.




. e " Kep\ev began
’fakmg data in

L e ~ March 2004, and

C :

k%7 . now there are

Vleav\t{, 3,900 p\ameT candidates:

Kepler has used the fransit

method, while staring at

150,000+ stars.,




. L é T\fns has been the
T o ’ﬂppmg point.,

There are now so many planets
that we can do some statistics.



kewlzy  Sizes of Planet Candidates
As of January 7, 2013
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Not in the previous graphs
(no mass estimates)

¢ ¢ ¢ € ‘

Moon Kepler-37b Mercury Mars Kepler-37c Earth Kepler-37d
P,.= 13 21 40 days
a,,= 0.10 0.14 0.21 AU

Mercury's orbit is 88 days at 0.39 AU.
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Characterization Techniques
Orbit: Mass and Radius
Transmission Spectroscopy

Reflection Spectroscopy (including
broadband photometry)



Masses come from orbital
mechanics only. Typically
this is Doppler shift.

Occasionally from orbital
period and semimajor
axis.

Unzeen planet
- _._.-r""*-

The mass of the planet must
be assumed (astero-
seismology can help).
Inclination is a free
parameter.



Transits also constrain the inclination:
but for very short period planets, the
constraints are lessened.

ey Star
----------------------- ORT 0. O S
Planet
Brithness
1
N 3/

- o
TIme




Doppler plus o

astrometry can (G3edar .-

constrain the e o e

inclination. F
S mass)

Star G1 876 without planet: Moves in straight line
. » @ » & » @ > &

Star G1 876 (visible) with planet (invisible): "Wobble" detected
-\ T T N -

A
’ i
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1

Period = 61 days



Transits also give the planet's radius.

Again asteroseismology can help.

ey Star
----------------------- ORT 0. O S
Planet
Brithness
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N 3/

. o
TIme




With sufficient transit precision
(ingress/egress timings), inclination can be
determined too (and more precise radii).

ey Star
----------------------- ORT 0. O S
Planet
Brithness
1
N 3/

. o
TIme




With mass and radius come density.

Model comparisons can be used to infer bulk

Radius [R,.. ]
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log planetary mass (Jupiter masses)

But the model dependence S oo o1

is large and open to some Tesa—" [

interpretation. .
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Transmission spectroscopy is a more direct
means of detecting the planet- but only the
atmosphere.

Starlight filkers through the planet's
sodiume-rich atm:::sphere

0>

absorption line spectrum




Relative Flux Planet [%/y]

10

- IRTF measurement

8 |-

Hubble measurement

But of course the
planet's
contribution has
to be separated
from the star's
contribution- and
this is difficult.

2 2.5 3
Wavelength [um]




Planat radius (Rg)

R./R.

2.80

[ 1 T T [ T T T T | T T T T | T T T T | T T T I ]
H ® Measurements ]
4 75 = — Solar eompasition mode l‘I =
C = 100% H.0 composition model ' 2
: —ir— % H SN RG I--I campositon modal :
2.70 E .=
205 |- -
260 |- Ly
5l
.-E-"_'"’_”""— bt -
2 55 A T Y| ST TRNPY WORN TSN TUN NS TR TR T PR T TN (NN TS TN | ]
E00 B&0 200 as0 1,000
Wavelength {nm)
| L l i i i 1 'I T L r L I L i i 1 'I r #’u T L r L 3
0.120 VLT + FORS * l -
L i 1 1 -"' 4
L My LI' & . 4
D.1 18 ? N l )4 | |'_' L _—
o '-'“--c;._. ; . . It.ﬁ. ' ! 1 4 . i
0.116 = . R\ !
0.114 I__— Salar composition model — 100% HO composition model — Mo CH, model N
[ ] I [|] 1 1 1 I 1 1 1 (] I [ | [ ] ] 1 I 1 1 1 1 I (]
0.6 0.7 0.8 0.9 1.0

Wavelength [gm)



2.50
o
I-\"-E
s
L
o
B
-
o
[ .
n 2.AD
L=
Z2.35
2.30

+ NICMOS (Swain et al., 2008)

A IRAC (Kuntson et al., 2007; Beaulieu et al., 2007; Algol et al, 2008)
€ MIPS {Knutson et al., 2008)

% ACS (Pent et al., 2007)

A Ground}-based obs. (Winn et al., 2007)

Dbhsarvaiions

Model, wgatar + methane -

Model, water+clear sky

Model, water+hozas

1
W

Wavelength (um)



Note that mostly these are
not true specitra.

They are multi-filtered data
compared to synthetic, or
lab, spectra.



Reflection Spectrum: Differenced from the star.

Star + Planet

~——

| Combined Spectrum

Star

l E{Iipse Spectrum

®

Planet

|
Planet Spectrum

Isolating a Planet’s Spectrum



Full planet *Wme%mmmmm

o O phases, the amount of
C ' light received from the

. . anet changes.

I photon ]

New planet i ) . * noise -

Each filter, which is a
summed portion of the

Amplitude (ppm)

spectrum, will depend on of -

the amount of reflected 11 . |
starlight (albedo) and the - E
planetary contribution I | N :
(blackbody + emission). 30 80 130 180 230 280 330

Phase angle (°)
Rouan et al. 2011



Houam ET AL.

Ful planet At different orbital

o O phases, the amount of
c . light received from the

. . anet changes.

I photon ]

New planet i j . s noise -

In transiting systems, at
some phases (secondary

Amplitude (ppm)

eclipse), there is starlight of -

only (the planet is behind 1 (™ . |
the star), which can be - 1
compared to other | _
phases, where the planet 3 8 130 180 230 280 330

Phase angle (°)

contributes. Rouan et al. 2011



Albedo

Then there is wavelength-dependent albedo.
This is what makes planets different “colors”.

Wavelength, um



Albedo

Houam ET AL.

Full plner Combined, you get
color and phase
. dependent reflection
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Intensity [/ (arb. units)

Full planet

Houam ET AL.
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You can also get phase
dependent thermal

' emission.
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This is how-the 'blue' planet was
found(?)




Helative Flux {ppm)

A = 290-450nm A = 4580-6T70nm
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Table 1 0.0
Visible Albedo Measurements for HD 189733b 0.0
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1 II come back to thls |n the context of Iava
pIanets and magma oceans |




- Star, ., - 5 ' 2002: Sodium detected
(violet and near-ultraviolet) - 2003: H, detected
. : - 2004: 0, & C & 3Rp atmo and tail

r atmosphere indicating evaporating atmosphere.

grey layer) . 2007: Balmer series & jump
N «etected, providing the picture at
left.

All HST UV/nUV
transmission
spectroscopy.

L] I-I ' o ."‘
s " P ™
Image Credit: L. McKibben and G.E. Ballester (UA-PPL)

.: - ., ',-.
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Findings and speculations for hot
(super)Earths that we're interested In.



Model transmission spectra for H-rich (blue), H-poor
(green) and intermediate H (red) atmospheres for a
hot SuperEarth.

Spitzer bands shown as points.
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WFC3 (this work)
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Overall, GJ1214Db's IR transmission spectrum is

consistent with HZO.



1.0]

As is the reflection
spectrum. From
Spitzer: Gillon et
al. 2013
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Fig. 10. Observations and model spectra of thermal emission
from GJ 1214b. The black circles with error bars show the
planet-star flux ratios observed in the Spitzer IRAC bandpasses
at 3.6 and 4.5 ym. The green and red solid curves in the main
panel show model spectra of an atmosphere with a solar abun-
dance H,-rich composition and one with a water-rich compo-
sition, respectively. The inset shows the temperature profile for
both models. The blue dashed curves show blackbody spectra of
the planet with temperatures of 500 K, 600 K, and 700 K.



GJ1214b is a hot
Super-Earth:

Mass =6.5M___

Radius = 2.7 REarth

p=1.6+/-0.6 g/cc

1

- Hydrogen and
helium?

(Anglada-Escude et al.
2013)

BUT... a side note that CFHT WIRCam observations
indicate a H/He atmosphere inconsistent with a water
world. (Croll et al. 2011; transmission spectra)



Water World: Exoplanet GJ 1214b

From Nature 17 Dec. 2009; Review by Marcy; Letter by Charbonneau et al.
IHustration & copyright kohn Garrett

GJ1214b
is a "super-Earth”,
being 2.7x the
size of Earth

“total mass:
~ 6.6x Earth's
mass

Average density :

| i r
Average || ?r:: LE:':;
density :

55 gl | cores shown Jumss—

Water: 0.06%
of Earth’s mas

Their
conclusion!

Water:
50% of GJ1214b’s
EES

Silicate
mantle

Our Sun
StarGJ1214
™

L]

Planet
GJ1214b




55Cnc e

M=7.8M_  R=2.17R__,

Silicate
Iron and MEE
nickel core

Density downgraded to
4.78+1'31_1_209/CC (Demory
/2011
Bl oger andj v Steamy water
= ~ atmosphere?

Ly
-1 .



55 Cancri e: Now fortified with Carbon!
M~8M R~2.2R P_ =18 hours T~2,400K

Earth’ Earth’

(Madhusudhan et al. 2012)




0 0.2 0.4 0.6 0.8 1
MgSio,

SiC
Figure 2. Ternary diagrams showing the range of interior compositions allowed by the mass and radii of 55 Cancri e. Two classes of interior models were considered,
based on the planetesimal compositions predicted by the stellar abundances. Left: models composed of Fe, 5iC, and C. Right: models composed of Fe, Mg510s, and
C. In each case, the red (blue) contours show the constraints from the visible (gray) radius. The blue contours are subsets of the red contours. The three axes in each

case show the mass fractions of the corresponding species.

The planet is primarily composed of carbon as graphite
and diamond; iron; silicon carbide; and possibly some
silicates



The star is carbon-rich, so the protostellar disk was
also likely to be.
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Graphite over diamond over silicon-based
minerals over iron core. Hot side ~2,400K.




CoRoT-7b
M=7.42M_ R=1.58R

Earth Earth
p=10.4"* 1.8 glcc
Kepler 10b
M=4.5M__ R=1.4R__
p =8.7 g/cc

Both claimed as Fe-rich Mercury-like from structural
models only (Gong & Zhou 2012 and Wagner et al.
2012).
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Kepler 10Db: 2; . - RaE
The lightcurve is alf ®
measured around the Orbit -10:. ...............................
(at right) and a model is 0 w0 10 180 20 20 3

generated (above)

The model is essentially a 2-parameter fit:
albedo and thermal radiation; assuming
negligible atmosphere, constant albedo, anad

the emissivity of liquid alumina.
(Rouan et al. 2011)



Reflected (blue)  °
and thermal

emission (red) '; 3
fora=0.5 just =
outside of 2= 1
secondary
transit.

4

Assumes night 3
side is cold and =
(fitted- Bruce?) =%
day side w-
reaches 3000K 0
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Kepler 11 has 6 planets, 5 with orbital

periods under 50 days.

Kepler-11b Kepler-11c Kepler-11d Kepler-11e Kepler-11f Kepler-11g

-y 4 ™
F
I | =
1

Planet Mass (M.) Radius(R.) Density (g cm )
b 1.9+ 1.80+0:03 172205
c 2.9+29 2.87+0-05 0.66" %S
d 7.35% 3.12550 1.28%57
e 8.0°3] 4.19%57 0.58" 1
f 2.0%5, 2.49%3 0.69";
e < 25 3.33°008 <4

But all with
low

densities.

(Lissauer et
al. 2013)
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Our Strategy (so far)

Press Release

Release No.: 2009-24
For Release: Wednesday, December 16, 2009 01:00:00 PM EST

Astronomers Find Super-Earth Using Amateur, Off-the-5Shelf Technology

Cambridge, MA - Astronomers announced today that they have discovered a "super-
Earth" orbiting a red dwarf star 40 light-years from Earth. They found the distant
planet with a small fleet of ground-based telescopes no larger than those many
amateur astronomers have in their backyards. Although the super-Earth is too hot to
sustain life, the discovery shows that current, ground-based technologies are capable
of finding almost-Earth-sized planets in warm, life-friendly orbits.

Astronomers found the new planet using the MEarth {pronounced "mirth") Project - an array of eight identical 16-inch-diameter RC
Optical Systems telescopes that monitor a pre-selected list of 2,000 red dwarf stars. Each telescope perches on a highly accurate
Software Bisque Paramount and funnels light to an Apogee Alta U42 camera containing a charge-coupled device (CCD) chip, which
many amateurs also use.




Observe several
star/planet systems
with varying sized
planets (from
superJupiters down to

Amplitude (ppm)

30 80 130 180 230 280 330
Phase angle (°)

superEarths) at several orbital phases.
This is done in several filters from Sloan
u (where thermal emission from the
planet should be zero) to I (where
thermal emission may contibute).



Build up the
phase-dependent
lightcurve (like at
right) and compare
with models.

Amplitude (ppm)

30 80 130 180 230 280 330
Phase angle (°)

Use color-color diagrams as diagnostics.



Color-color predictions for Gaseous planets.
(from Cahoy, Marley, & Fortney: NASA Ames)
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The streaks indicate orbital phase from O (behind,
but not obscured) to 180 (illuminated side away
from observer) as they fade away.




B-R, B-I B-V, B-I

Another one
* * from the same
& K : paper but with
” 4 “ol o7t morefilter
4 o2 £ 4 combinations.
’ i
T 4 o Note that these
g g are all optical.
ol (I is Bessell |,
$ - Just like we're
: | ' using and is
2 3 o8| 3 -
: v@ o i very near-IR)
U a7




Initially, we thought
we'd use GTCam?2
and simultaneously :
plug away in 3 colors;

taking a ton of
images!

However, the lack of EEEEEE &
comparison starsisan
ISsue.




S0 we're using our
other CCD camera
and flipping filters.
The FoV is 4 times
larger so we get many
more comparison
stars.




The End
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