## Understanding the Atmospheres of Hot Earths...

Progress in the lab!

**Denny Bosch** 

with Nolan Ingersoll, Curtis Israel, Tyler Noyes, and Cory Honer

Advisor: Dr. David Cornelison

## Recap of what we've been doing:

- Matrix isolation of samples using argon ice
- Fourier transform
  infrared spectroscopy
- Samples (komatiite):
  - SiO<sub>2</sub>
  - MgO
  - CaO
  - $Al_2O_3$
  - FeO



## Our (old) system

#### Focus GmbH EFM 4 UHV Evaporator (e-beam)





## Adding H<sub>2</sub>O

- Any water added to the crucible will evaporate preferentially long before the oxide rock sample even melts.
- Waters of hydration: evaporating water from a hydrate rock (efflorescence) with increasing temperature
- $(SiO_2)_{10} \cdot 14H_2O \rightarrow SiO_2 + 14H_2O$ (Water evaporates at only ~200 C)

## **Sealed Crucible**

Idea: waters of hydration are confined to the crucible until the appropriate temperature.



 Pressure inside crucible causes foil seal to burst at a specific temperature.

 Seal between foil, crucible, and lid is made with a press.

## **Sealed Crucible**

- Foil must be same material as crucible so it doesn't pop from thermal expansion
- Tested using a crucible with gas pressure added through the bottom.
- Problem: unable to make an airtight seal using refractory metal foils (ideas?)



## **Komatiite Diffusion Barrier**

- Idea: creating a barrier of fused sample that will not permit diffusion of waters of hydration until the sample fully melts.
- This can be achieved by flashing the filled crucible at a temperature high enough to melt the surface grains in an inert atmosphere (argon).



[type of laser] laser. Not yet tested.

## SiO<sub>2</sub> Atmosphere IR Spectrum

#### SiO<sub>2</sub> was evaporated and deposited into an Ar ice.



## SiO<sub>2</sub> Atmosphere IR Spectrum

- Each peak appears as a triplet due to the presence of Si isotopes:
  - Si28 (1218 cm<sup>-1</sup>)
  - Si29 (1222 cm<sup>-1</sup>)
  - Si30 (1226 cm<sup>-1</sup>)



## SiO<sub>2</sub> Atmosphere IR Spectrum

- Measured constituents of pure silica atmosphere by peak intensity:
  - SiO dimer, SiO, SiO trimer, SiO<sub>2</sub>, Si<sub>2</sub>O<sub>4</sub>, SiO<sub>3</sub>
  - Possible  $SiH_4$  and  $O_3$ .

 Oxygen gas cannot be detected through IR spectroscopy but thin-film deposition and EDS/EDX measurements demonstrate a depletion of oxygen from the material in the crucible (preferential evaporation of oxygen).

# Is this representative of an equilibrium atmosphere?

- Matrix isolation spectroscopy is claimed to work at ratios of 1000:1 argon to sample and at low temperatures
- We need to verify that no diffusion occurs in order to present matrix isolated results as equivalent to material in the crucible that is still at an equilibrium.
- Experiment: time evolution of spectra at various temperatures and pressures of argon

#### **Problems!**

Contamination feature began to appear:



- Identified as tungsten oxide, most likely residue from thoriated tungsten filament.
- Need to develop a cleaning technique to remove contamination from evaporator.

## **More Problems!**

- Power supply failure: both power supplies (EVC100 and NGEFM) are unable to provide the desired current and voltage outputs to obtain high temperatures
- Solution: design our own evaporator that doesn't constantly fail and contaminate itself!
  - Thoriated tungsten electron source for e-beam evaporator doubles as a contamination source.
  - E-beam evaporator power supplies are expensive to repair and would not be able to melt some of our materials even when fixed.

## **New Designs**

New vacuum chamber geometry will allow for simultaneous growth of samples, measurement of sample thickness, and infrared spectroscopy.



#### **Optical System**



## **Optical System**

- Multi-pass optics to increase signal for inbeam spectroscopy.
- "Traditional" matrix isolation spectroscopy can still be done, as well.
- Still in the design phase.



#### **Evaporator**

- Resistive heating:
  - Higher temperature range
  - More reliable
- Crucible:
  - Larger sizes possible for better volume:aperture ratio or higher flux
  - On a bottom-loading flange like previous design
  - Water-cooling shroud



#### We could use some help with...

- The problem of adding water to a rock atmosphere remains.
- Water must be same temperature as komatiite sample.
- Nate's design: inner/outer crucible... how does it work?

# Diffusion studies in Ar matrix isolation at low temperatures

- We have demonstrated that at temperatures below 18 K, no diffusion of  $CH_4$  atoms takes place within an argon matrix over a period of 20+ hours, even at ratios of less than 1000:1 Ar:CH<sub>4</sub>.
- Beginning at 19 K under ultra-high vacuum pressures (approx. 10<sup>-9</sup> torr), argon atoms begin to leave the ice matrix allowing diffusion to take place.

## **Temperature-correlated diffusion** in argon ice matrix

8.38 -8.36



### **Other Work**

 MATLAB code for modeling planetary atmospheres as seen by telescope CCD





### **Other Work**

 MATLAB code for modeling planetary atmospheres as seen by telescope CCD





**Other Work** 



• Filters/bins modeled