OBSERVING

OBSERVING MODES

Series

- multiple targets during a night
- sets of ~10 images per filter

Continuous

- one target during a night
- as many images as possible

TARGET A: WASP-14 SERIES MODE 01AUG13

unbinned

TARGET A: WASP-14 SERIES MODE 01AUG13

binned

TARGET W: COROT-1 CONTINUOUS MODE 01JAN14

unbinned

TARGET W: COROT-1 CONTINUOUS MODE 01JAN14

unbinned

binned

CoRoT-1 (star) Mass (M_o) 0.95 Radius (R_o) 1.110 T_{eff} (K) 5950 V mag 13.6

CoRoT-1b (planet)

Midtransit Time (d)	2454159.4532
Transit Duration (h)	2.51
Mass (M _J)	1.03
Radius (R _J)	1.49
Semi-Major Axis (AU)	0.0253
Orbital Period (d)	1.51

Table info: <u>http://exoplanets.org/detail/CoRoT-1_b</u> Size diagram: <u>http://www.openexoplanetcatalogue.com/system.html?id=CoRoT-1+b</u> Transit diagram: <u>http://astro.uchicago.edu/~kbs/research.html</u>

COROT 1B – EXISTING RESULTS

KS-BAND DETECTION OF THERMAL EMISSION AND COLOR CONSTRAINTS TO COROT-1B: ... ROGERS ET AL. 2009, 2010

- ARC 3.5m at Apache Point Observatory
- Eclipse depth: 0.336 ± 0.042%
- Bond albedo: 0.050 $^{+0.093}_{-0.050}$
- Blackbody model temperature: 2310 +30 -60

COROT 1B – EXISTING RESULTS

WARM SPITZER PHOTOMETRY OF THE TRANSITING EXOPLANETS COROT-1 AND COROT-2 AT SECONDARY ECLIPSE DEMING ET AL. 2011

- Orbit close to circular
- Blackbody temperature: 2460 K
- Supports Bond albedo <10%

COROT 1B – EXISTING RESULTS GROUND-BASED DETECTIONS OF THERMAL EMISSION FROM COROT-1B AND WASP-12B

ZHAO ET AL. 2012

- Thermal emission at secondary eclipse
- Palomar 200 inch
- H-band (1.635 microns)

COROT 1B – EXISTING RESULTS

A 0.8-2.4µm TRANSMISSION SPECTRUM OF THE HOT JUPITER COROT-1B

- Disfavors TiO/VO spectrum
- Possibly some other absorber causing a temperature inversion

ALBEDO VS. PLANET BRIGHTNESS

IMAGE PROCESSING – CCD LAYERS

- Sky stray light evenly spread across the image
- Flats pixels have varied sensitivities due to pixel itself or specks of dust, bright blank exposures
- Dark current electronic noise that accumulates over time, long exposures with shutter closed
- Bias level noise from electricity, zero length exposure

IMAGE PROCESSING -PHOTOMETRY

• change in brightness over time

WHAT WE SEE

WHAT WE SEE

IRAF APERTURE PHOTOMETRY

puts a circle around the star, sums those pixel counts

IRAF APERTURE PHOTOMETRY

18 Dec 2013

MOMF MULTI OBJECT MULTI FRAME PHOTOMETRIC PACKAGE

 Point-Spread Fitting applies profile to the star

MOMF

THINGS WE TRIED TO FIX THE DATA...

AIRMASS

PIXEL DEPENDENT BRIGHTNESS

NIGHT-TO-NIGHT DIFFERENCES

NIGHT-TO-NIGHT DIFFERENCES

0,790011, -0,301972

COLORS

- Target star color vs. comparison star color
 - i.e. g r or r l
- Differ night-to-night...

SO THIS IS WHAT WE HAVE:

- Photometric measurements
- Determined phases
- Binned by phase

MODEL FITTING - MFIT.C

READ THE MODEL AND DATA

INTERPOLATE THE MODEL

FIND DIFFERENCES

REPEAT FOR MULTIPLE ALBEDOS

OUTPUT

min at albedo = -0.12

THANK YOU!

