
National Aeronautics and Space Administration

www.nasa.gov

Vaporization Coefficients of Oxides
Nathan Jacobson

NASA Glenn Research Center
Cleveland, OH

Nolan Ingersoll
Missouri State University/NASA Glenn Summer Intern

Dwight Myers
Dept of Chemistry

East Central University
Ada, OK

Gustavo Costa
NASA/ORAU Post-Doctoral Fellow

NASA Glenn Research Center



National Aeronautics and Space Administration

www.nasa.gov

Vaporization Coefficients

• Vapor Flux (mole/unit area-unit time) leaving a free surface into a vacuum:
Described by Hertz-Knudsen-Langmuir (HKL) equation

• Measured flux--Modified by a factor α: Vaporization Coefficient

– Metals: Generally unity; Oxides 10-1 to 10-5 !

• Vaporization coefficient αv; Condensation coefficient αc Equal at equilibrium

• Free surface vaporization = Langmuir vaporization

• Important parameter—relatively little expt’l or theoretical work since 1970s
– True vapor flux in a deposition processes
– High temperature material vaporization limit
– True vapor flux in a geochemical/cosmochemical processes
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What Leads to non-unity Vaporization Coefficients?

• Vaporization of silica
– SiO2(s) = SiO2(g)
– SiO2(s) = SiO(g) + ½ O2(g)
– SiO2(s) = SiO(g) + O(g)

• Complex process
– Break apart SiO4

-2

– Adsorbed SiO2(a), SiO(a), O2(a), O(a)
– Desorption to SiO2(g), SiO(g), O2(g), O(g)
– Break O-O, Si-O bonds; make O=O double 

bond

• Expect a kinetic barrier ⇒ flux reduced from 
equilibrium
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Experimental Measurement of Vaporization 
Coefficients: Two Methods

• Compare vaporization flux from a free surface (Langmuir vaporization) to that 
calculated from equilibrium
– Advantages: Rapid measurements, minimal container issues, requires 

only a good vacuum microbalance
– Disadvantages: Overall vaporization coefficient for many vapor species, 

would expect a different vaporization coefficient for each species; need 
good thermodynamic data

• Knudsen Cells of different orifice geometries (Chatillon, modification of 
Whitman-Motzfeld method)
– Use several cells with difference orifice geometries ⇒

different transmission factors
– Differences in measured fluxes due to transmission factors 

and vaporization coefficient
– Extract vaporization coefficient
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Langmuir Vaporization of Silica (Nolan & Continuing work)
• Starting material:

– Fused silica plates (QSI, Fairport Harbor, OH) from Corning 7980 
high purity silica

– Cut to 2 x 1 x 0.16 cm squares
– Grit blast hangwire hole
– Use Ir hangwire (inert to silica)

• Measure flux from weight loss

• Compare to calculated total flux
– SiO2(s) = SiO(g) + ½ O2

– SiO2(s) = SiO2(g)
– SiO2(s) = Si(g) + O(g) + ½ O2

𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ∑ 𝐽𝐽𝑖𝑖 = ∑ 𝑃𝑃𝑖𝑖
2𝜋𝜋𝑀𝑀𝑖𝑖𝑅𝑅𝑅𝑅

= 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆
2𝜋𝜋𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅

+ 
𝑃𝑃𝑂𝑂2

2𝜋𝜋𝑀𝑀𝑂𝑂2𝑅𝑅𝑅𝑅
+ 𝑃𝑃𝑂𝑂

2𝜋𝜋𝑀𝑀𝑂𝑂𝑅𝑅𝑅𝑅
+ 

𝑃𝑃𝑆𝑆𝑆𝑆𝑂𝑂2
2𝜋𝜋𝑀𝑀𝑆𝑆𝑆𝑆𝑂𝑂2𝑅𝑅𝑅𝑅

– Thermodynamic data in FactSage free energy minimization code was 
used to compute the fluxes at temperatures that were experimentally 
tested.  Codes allow easy calculation of total flux.
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Coupon

W Element

TC

Experimental Method

Axial thermocouple—very important!
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Experimental Issues: W, Ta deposits on Samples

W deposits at 
1673K (1400°C) 

Ta deposits at
1873K (1550°C)

M(s) + (x/2)O2(g) → MOx(g) → M(deposit) + (x/2)O2(g)
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Tungsten 

Tantalum  

Zirconium  

Graphite (no condensable oxides!)

Use Graphite Shroud and Zr Getter to avoid 
W, Ta Deposition on Sample 1948K (1675°C)

Small amount of Al
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Crystallization of Fused Silica Outer Surface: 
8 hrs at Temperature

1748K 1948K

1798K

1848K

1898K

50 μm

• Vaporizing Surface is effectively
crystalline silica above 1798K

• XRD: cristobalite



National Aeronautics and Space Administration

www.nasa.gov

Vaporization Coefficient of Silica from Langmuir Evaporation

• Omit 1748K (1475°C)—may not be fully crystalline

• Measure 1798-1948K (1525-1675°C)  α (from total flux) = (4.5 ± 1.4) x 10-3

• Temperature dependence
• Appears temperature independent below 1900K (1627°C) 
• May decrease near melting?  Need more data here!
• Searcy “Kinetics of Evaporation and Condensation Reactions” Wiley, 1970.

• Transition state theory
• Relationship of ΔH*(Langmuir) to ΔHo(Thermodynamic); 

ΔS*(Langmuir) to ΔSo(Thermodynamic)
• Inferences about nature of transition state ΔH* ≈ ΔHo, ΔS* > ΔSo

• Similar to vapor; excited state?

T(K)

J(Calc--
SIO+O+O2+SiO2)  
mg/cm2-hr

J(meas)  
mg/cm2-hr α Total

1798 10.091 0.045 4.47E-03
1848 25.665 0.142 5.54E-03
1898 62.075 0.361 5.81E-03
1948 312.25 0.709 2.27E-03
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Comparison to other Measurements

Solid Vapor 
Species

T Range (K) Vaporization
Coefficient

Method Reference

SiO2 + Mo SiO(g) 1692-1739 (3.2 ± 0.9) x 10-2 Knudsen cell with varying 
office size

Nagai et al.

SiO2 SiO(g) 1800-1950 (2.2 ± 0.8) x 10-2 Free surface compared 
equilibrium

Firsova & 
Nesmeyanov

SiO2 + Mo SiO(g) 1700-1950 (2.2 ± 0.3) x 10-2 Knudsen cell with varying 
office size

Shornikov et al.

SiO2 SiO(g)
(primarily)

1833-1958 (1.1 – 1.5) x 10-2 Free surface compared 
equilibrium

Hashimoto

SiO2 SiO(g) 
(primarily)

1800-1950 (4.5 ± 1.4) x 10-3 Free surface compared 
equilibrium

This study

− S. Nagai, K. Niwa, M. Shinmei, and T. Yokokawa, J. Chem. Soc., Faraday Trans. I, 69 [9], 1973, pp. 1628-1634.
− L. P. Firsova and An. N. Nesmeyanov, Russian J. Phys. Chem. 34 [12], 1960, pp. 1279-1281,
− S.I. Shornikov, I. Yu. Archakov, and M. M. Shul’ts. Russian J. Gen. Chem. 69 [2], 1999, pp. 187-196
− A. Hashimoto, Nature. 347. 1990. pp. 53-55.

Lower values in this study:
• Selection of thermodynamic data used for calculation
• Considered all vapor components (SiO(g), O(g), O2(g), SiO2(g))
• Knudsen cell studies—a different reaction Mo + 3SiO2 = 3SiO(g) + MoO3(g)
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Contrast with SiO2, where α is independent of temperature
For MgO—suggests ΔH* > ΔHo Transition state more complex
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Knudsen Cell-Based Method of Determining 
Vaporization Coefficients

NASA Glenn Center Innovation Fund 2015 
Awarded partly on Basis of EPSCoR Studies!
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Knudsen Cell Method

– Classic method from high temperature chemistry for studying condensed phase vapor equilibria
– Typically 1 cm diameter x 1 cm high with a 1 mm orifice
– Near equilibrium established in cell, use effusing molecular beam to analyze vapor
– Low pressure method (mean free path) ≥ 10 x (orifice diameter); molecule-wall collisions 

dominate
– Key parameters:  

• Orifice area, 
• Orifice transmission factor, W = (# escapes)/(total #)  e.g. L/R = 4, W = 0.35 

16
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Knudsen Cell Method of Measuring Vaporization Coefficient

• Start with Whitman-Motzfeld extrapolation to zero-orifice
– Equation developed independently in 1960s by two different groups
– Balance up/down pressures in a Knudsen Cell

equal Assume
tcoefficien oncondensatiα t;coefficien onvaporizatiα
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•Pick several cells with different orifice geometries
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Adapt to a Mass Spectrometer

• Heyrman and Chatillon, J. Chem. Phys. Solids. 66 (2005), 494-497.
– Couple a Knudsen effusion mass spectrometer (KEMS) to multiple 

cells with different transmission factors.
– Note that P = kIT/σ, where k = instrument constant, I = ion intensity, 

T = absolute temperature, σ = ionization cross section
– Pressure ratios = Ion intensity ratios
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Use pairs of cells with different 
orifice geometries
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Use Multi-Knudsen Cell Mass Spectrometer with 
Restricted Collimation (cf. Chatillon)

Ionizer effectively ‘sees’ only inside cell

• Cell diameter always > field aperture

• Differences in ion intensity relate to 
vaporization coefficient

• Whitman-Motzfeld equation for each
pair of cells

Copland, 2002
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Vaporization Coefficients from Knudsen Cell
SiO(g) vaporizing from a mix of Y2SiO5 +Y2O3 + 3Ta
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Conclusions: Vaporization Coefficient of Oxides
• Important parameter for vaporization of compounds

– Kinetic barrier to vaporization
– Vapor flux from a free surface ~ (10-1-10-5)*flux predicted from equilibrium vapor pressures

• Two methods of measurement
– Comparison of free surface vaporization to equilibrium

• No container interactions.  But gives overall vaporization coefficient for many vapor 
species.  Need consistent thermodynamic data.

– Knudsen cells with different transmission factors
• Vaporization for each vapor species.  Independent of thermodynamic data.  Container 

issues.

• SiO2 and MgO studies
– SiO2: (4.5 ± 1.4) x 10-3  (1798-1948K)
– Somewhat lower than other published values: choice of thermodynamic data
– MgO: 0.05-0.12 (1700-2000K)  Linear temperature dependence 

• Developing/adapting method based on Knudsen cells
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Conclusions: Vaporization Coefficient of Silica

• Lots to do!
– Extend to other simple and complex oxides
– Experimental: methods, data!
– Theoretical

• Molecular dynamics modeling?
• Description of vaporization process

• Important area which has not really been addressed since the 1970s!

• Acknowledgements
– NASA Glenn Center Innovation Fund  ‘Measuring Vaporization Coefficients’
– NASA EPSCoR Grant with Missouri Universities ‘Atmospheres of Hot, Rocky 

Exoplanets’
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and multi-cell sampling to our system
– Don Humphrey, ZIN Technologies/NASA Glenn
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