

Vaporization Coefficients of Oxides

Nathan Jacobson NASA Glenn Research Center Cleveland, OH

Nolan Ingersoll Missouri State University/NASA Glenn Summer Intern

> Dwight Myers Dept of Chemistry East Central University Ada, OK

Gustavo Costa NASA/ORAU Post-Doctoral Fellow NASA Glenn Research Center

Vaporization Coefficients

$$J(\max) = \frac{P_{eq}}{\sqrt{2\pi MRT}}$$

• Measured flux--Modified by a factor α: Vaporization Coefficient

$$J(measured) = \frac{\alpha P_{eq}}{\sqrt{2\pi MRT}}$$

- Metals: Generally unity; Oxides 10⁻¹ to 10⁻⁵!
- Vaporization coefficient α_v ; Condensation coefficient α_c Equal at equilibrium
- Free surface vaporization = Langmuir vaporization
- Important parameter—relatively little expt'l or theoretical work since 1970s
 - True vapor flux in a deposition processes
 - High temperature material vaporization limit
 - True vapor flux in a geochemical/cosmochemical processes

Pyrometer sighting port

What Leads to non-unity Vaporization Coefficients?

- Vaporization of silica
 - $-\operatorname{SiO}_2(s) = \operatorname{SiO}_2(g)$
 - $-SiO_2(s) = SiO(g) + \frac{1}{2}O_2(g)$
 - $-\operatorname{SiO}_2(s) = \operatorname{SiO}(g) + \operatorname{O}(g)$
- Complex process
 - Break apart SiO₄-2
 - Adsorbed $SiO_2(a)$, SiO(a), $O_2(a)$, O(a)
 - Desorption to $SiO_2(g)$, SiO(g), $O_2(g)$, O(g)
 - Break O-O, Si-O bonds; make O=O double bond
- Expect a kinetic barrier ⇒ flux reduced from equilibrium

Experimental Measurement of Vaporization Coefficients: Two Methods

- Compare vaporization flux from a free surface (Langmuir vaporization) to that calculated from equilibrium
 - Advantages: Rapid measurements, minimal container issues, requires only a good vacuum microbalance
 - Disadvantages: Overall vaporization coefficient for many vapor species, would expect a different vaporization coefficient for each species; need good thermodynamic data
- Knudsen Cells of different orifice geometries (Chatillon, modification of Whitman-Motzfeld method)
 - Use several cells with difference orifice geometries ⇒
 different transmission factors
 - Differences in measured fluxes due to transmission factors and vaporization coefficient
 - Extract vaporization coefficient

Langmuir Vaporization of Silica (Nolan & Continuing work)

- Starting material:
 - Fused silica plates (QSI, Fairport Harbor, OH) from Corning 7980 high purity silica
 - Cut to 2 x 1 x 0.16 cm squares
 - Grit blast hangwire hole
 - Use Ir hangwire (inert to silica)
- Measure flux from weight loss
- Compare to calculated total flux
 - $SiO_2(s) = SiO(g) + \frac{1}{2}O_2$
 - $-\operatorname{SiO}_2(s) = \operatorname{SiO}_2(g)$

$$- SiO_2(s) = Si(g) + O(g) + \frac{1}{2}O_2$$

 $J_{calc} = \sum J_i = \sum \frac{P_i}{\sqrt{2\pi M_i RT}} = \frac{P_{SiO}}{\sqrt{2\pi M_{SiO} RT}} + \frac{P_{O_2}}{\sqrt{2\pi M_{O_2} RT}} + \frac{P_O}{\sqrt{2\pi M_O RT}} + \frac{P_{SiO_2}}{\sqrt{2\pi M_{SiO_2} RT}}$

 Thermodynamic data in FactSage free energy minimization code was used to compute the fluxes at temperatures that were experimentally tested. Codes allow easy calculation of **total flux**.

Experimental Method

Vacuum Microbalance

Experimental Issues: W, Ta deposits on Samples

 $M(s) + (x/2)O_2(g) \rightarrow MO_x(g) \rightarrow M(deposit) + (x/2)O_2(g)$

Use Graphite Shroud and Zr Getter to avoid W, Ta Deposition on Sample 1948K (1675°C)

Graphite (no condensable oxides!)

Crystallization of Fused Silica Outer Surface: 8 hrs at Temperature

Vaporization Coefficient of Silica from Langmuir Evaporation

	J(Calc		
	SIO+O+O2+SiO2)	J(meas)	
T(K)	mg/cm2-hr	mg/cm2-hr	α Total
1798	10.091	0.045	4.47E-03
1848	25.665	0.142	5.54E-03
1898	62.075	0.361	5.81E-03
1948	312.25	0.709	2.27E-03

- Omit 1748K (1475°C)—may not be fully crystalline
- Measure 1798-1948K (1525-1675°C) α (from total flux) = (4.5 ± 1.4) x 10⁻³
- Temperature dependence
 - Appears temperature independent below 1900K (1627°C)
 - May decrease near melting? Need more data here!
 - Searcy "Kinetics of Evaporation and Condensation Reactions" Wiley, 1970.
 - Transition state theory
 - Relationship of ΔH*(Langmuir) to ΔH°(Thermodynamic); ΔS*(Langmuir) to ΔS°(Thermodynamic)
 - Inferences about nature of transition state $\Delta H^* \approx \Delta H^{\circ}$, $\Delta S^* > \Delta S^{\circ}$
 - Similar to vapor; excited state?

Comparison to other Measurements

Solid	Vapor Species	T Range (K)	Vaporization Coefficient	Method	Reference
SiO ₂ + Mo	SiO(g)	1692-1739	(3.2 ± 0.9) x 10 ⁻²	Knudsen cell with varying office size	Nagai et al.
SiO ₂	SiO(g)	1800-1950	(2.2 ± 0.8) x 10 ⁻²	Free surface compared equilibrium	Firsova & Nesmeyanov
SiO ₂ + Mo	SiO(g)	1700-1950	(2.2 ± 0.3) x 10 ⁻²	Knudsen cell with varying office size	Shornikov et al.
SiO ₂	SiO(g) (primarily)	1833-1958	(1.1 – 1.5) x 10 ⁻²	Free surface compared equilibrium	Hashimoto
SiO ₂	SiO(g) (primarily)	1800-1950	(4.5 ± 1.4) x 10 ⁻³	Free surface compared equilibrium	This study

- S. Nagai, K. Niwa, M. Shinmei, and T. Yokokawa, J. Chem. Soc., Faraday Trans. I, 69 [9], 1973, pp. 1628-1634.

- L. P. Firsova and An. N. Nesmeyanov, Russian J. Phys. Chem. 34 [12], 1960, pp. 1279-1281,

- S.I. Shornikov, I. Yu. Archakov, and M. M. Shul'ts. Russian J. Gen. Chem. 69 [2], 1999, pp. 187-196

A. Hashimoto, Nature. 347. 1990. pp. 53-55.

Lower values in this study:

- Selection of thermodynamic data used for calculation
- Considered all vapor components (SiO(g), O(g), O₂(g), SiO₂(g))
- Knudsen cell studies—a different reaction Mo + 3SiO₂ = 3SiO(g) + MoO₃(g)

Contrast with SiO₂, where α is independent of temperature For MgO—suggests $\Delta H^* > \Delta H^\circ$ Transition state more complex

Knudsen Cell-Based Method of Determining Vaporization Coefficients

NASA Glenn Center Innovation Fund 2015 Awarded partly on Basis of EPSCoR Studies!

Knudsen Cell Method

- Classic method from high temperature chemistry for studying condensed phase vapor equilibria
- Typically 1 cm diameter x 1 cm high with a 1 mm orifice
- Near equilibrium established in cell, use effusing molecular beam to analyze vapor
- Low pressure method (mean free path) ≥ 10 x (orifice diameter); molecule-wall collisions dominate
- Key parameters:
 - Orifice area,
 - Orifice transmission factor, W = (# escapes)/(total #) e.g. L/R = 4, W = 0.35

Knudsen Cell Method of Measuring Vaporization Coefficient

- Start with Whitman-Motzfeld extrapolation to zero-orifice
 - Equation developed independently in 1960s by two different groups
 - Balance up/down pressures in a Knudsen Cell

 $\alpha_{\rm L} P_{eq} = \alpha_c d_1 + f u_2$ Vaporization = condensation + escape through orifice

 $u_1 = \alpha_c P_{eq} = \alpha_L P_{eq} + (\alpha_{dr} + \alpha_{sr})d_1$ Upward pressure = vaporization - rebounding of molecules from top

 $d_2 = (1 - f)u_2$ Downward pressure near top = reflection from top - escape through orifice

 $u_2 = W_A u_1 + (1 - W_A) d_2$ Upward pressure near top = fraction molecules moving upward - fraction rebounding

Adapt to a Mass Spectrometer

- Heyrman and Chatillon, J. Chem. Phys. Solids. 66 (2005), 494-497.
 - Couple a Knudsen effusion mass spectrometer (KEMS) to multiple cells with different transmission factors.
 - Note that $P = kIT/\sigma$, where k = instrument constant, I = ion intensity, T = absolute temperature, σ = ionization cross section
 - Pressure ratios = Ion intensity ratios

$$P_m\left[1+f\left(\frac{1}{\alpha_c}+\frac{1}{W_a}-2\right)\right] = P_{eq}$$

$$\frac{P_{m2} - P_{m1}}{P_{m2}f_2 - P_{m1}f_1} = m$$

Use pairs of cells with different orifice geometries

$$\frac{I_{m2} - I_{m1}}{I_{m2}f_2 - I_{m1}f_1} = m$$

$$\frac{1 - \frac{I_{m1}}{I_{m2}}}{f_2 - \frac{I_{m1}f_1}{I_{m2}}} = -\left(\frac{1}{\alpha_c} - 0.51\right)$$

National Aeronautics and Space Administration Use Multi-Knudsen Cell Mass Spectrometer with Restricted Collimation (cf. Chatillon)

Ionizer effectively 'sees' only inside cell

- Cell diameter always > field aperture
- Differences in ion intensity relate to vaporization coefficient
- Whitman-Motzfeld equation for each pair of cells

Copland, 2002

Vaporization Coefficients from Knudsen Cell SiO(g) vaporizing from a mix of $Y_2SiO_5 + Y_2O_3 + 3Ta$

Conclusions: Vaporization Coefficient of Oxides

- Important parameter for vaporization of compounds
 - Kinetic barrier to vaporization
 - Vapor flux from a free surface ~ $(10^{-1}-10^{-5})$ *flux predicted from equilibrium vapor pressures
- Two methods of measurement
 - Comparison of free surface vaporization to equilibrium
 - No container interactions. But gives overall vaporization coefficient for many vapor species. Need consistent thermodynamic data.
 - Knudsen cells with different transmission factors
 - Vaporization for each vapor species. Independent of thermodynamic data. Container issues.
- SiO2 and MgO studies
 - SiO2: (4.5 ± 1.4) x 10⁻³ (1798-1948K)
 - Somewhat lower than other published values: choice of thermodynamic data
 - MgO: 0.05-0.12 (1700-2000K) Linear temperature dependence
- Developing/adapting method based on Knudsen cells

Conclusions: Vaporization Coefficient of Silica

- Lots to do!
 - Extend to other simple and complex oxides
 - Experimental: methods, data!
 - Theoretical
 - Molecular dynamics modeling?
 - Description of vaporization process
- Important area which has not really been addressed since the 1970s!
- Acknowledgements
 - NASA Glenn Center Innovation Fund 'Measuring Vaporization Coefficients'
 - NASA EPSCoR Grant with Missouri Universities 'Atmospheres of Hot, Rocky Exoplanets'
 - Evan Copland, now with CSIRO Australia, for adding restricted collimation and multi-cell sampling to our system
 - Don Humphrey, ZIN Technologies/NASA Glenn