

Thermochemistry of Olivine

Gustavo Costa and Nathan Jacobson NASA Glenn Research Center Cleveland, OH gustavo.costa@nasa.gov

Outline of Presentation

- Objectives
 - Measuring partial thermodynamic quantities by Knudsen Effusion Spectrometry (KEMS)
 - Component (MgO, SiO₂, FeO) thermodynamic activities in Olivine
- Thermochemistry of Olivine

Results for Olivine and Magnesia (reference material)

• Summary

Our Objectives

- Knudsen Effusion Mass Spectrometry of possible mineral assemblages to study the atmosphere of rocky, hot exoplanets
 - Olivine Mg(g), Fe(g), SiO(g), $O_2(g)$, O(g)
 - Silica SiO(g), $O_2(g)$, O(g)
 - Magnesia MgO(g), O₂(g), O(g)
 - Magnetite and wüstite –FeO(g), O₂(g)
- Thermodynamic data

- Green – B sites, Mg or Fe

- van't Hoff plot—ln(P) vs 1/T—gives Δ H and Δ S
- Thermodynamic activities of SiO₂, FeO and MgO gives Δ G of olivine

Partial Thermodynamics Quantities: Activity and Vapor Pressure Measurement

 $Au(\ell) = Au(g)$

 $\Delta_V H^o = -R^*(-41.162) = 342.20 \text{ kJ/mol}$

Thermodynamic Activities

- Important solution parameters
- Quantify how vapor pressure is reduced due to solution formation
- Example: Olivine—can treat as solution of FeO, MgO, SiO₂
- Use data to calculate thermodynamic activity of each component
- Measure thermodynamic parameters for olivine solutions
 - e.g. In a(FeO) vs 1/T slope is partial molar enthalpy
 - Input to codes to model:
 - Atmospheres of hot, rocky exoplanets
 - Vapor over lava

Solutions: $A_{1-\alpha}B_{1-\beta}C_{1-\gamma}$ Same Phase; Variable Stoichiometry

FeO(solution, a < 1) = Fe(g) + $1/2 O_2(g)$

 $FeO(s) = Fe(g) + 1/2 O_2(g)$

$$\mathbf{K}_{p} = \frac{P_{Fe}^{o} [P_{O_{2}}^{o}]^{1/2}}{a_{FeO}} = \frac{P_{Fe}^{o} [P_{O_{2}}^{o}]^{1/2}}{1}$$

$$K_{p} = \frac{P_{Fe} [P_{O_{2}}]^{1/2}}{a_{FeO}}$$

$$a_{FeO} = \frac{P_{Fe} [P_{O_2}]^{1/2}}{P_{Fe}^o [P_{O_2}^o]^{1/2}}$$

Thermodynamic Measurements

- Integral thermodynamic quantities:
 - Calorimetry (UC Davis)
- Partial thermodynamic quantities:
 - Oxidation-reduction equilibrium using gas mixtures
 - EMF methods
 - Mass Spectrometry (NASA Glenn)

Mass spectrometer: Intensity \rightarrow Pressure \rightarrow Activity

Knudsen Effusion Mass Spectrometry (KEMS)

- 90° magnetic sector; non-magnetic ion source ion counting detector \Rightarrow no mass discrimination
- Cross axis electron impact ionizer
- Resistance heated cell; multiple Knudsen cell system
- Measurements to 2000°C, Pressure to 1 x 10⁻¹⁰ bar

Olivine and Rare - Earth Silicates

$$| ntensity \rightarrow Pressure \rightarrow Activity |$$

Olivine - Results

93% forsterite and 7% fayalite, $Fo_{93}Fa_7 - (Fe_{0.7}Mg_{0.93})_2SiO_4$

Olivine – Starting Material and Characterization

ICP-OES analysis of the as received olivine samples.

Element	*Wt (%)
Al	0.0120(6)
Ca	0.035(2)
Со	0.0120(6)
Cr	0.052(3)
Fe	5.01(3)
Mg	30(2)
Mn	0.075(4)
Na	0.0080(4)
Ni	0.27(1)
Sc	0.0040(2)
Si	20(1)

*Uncertainties of the analyses are given in parentheses.

National Aeronautics and Space Administration

XRD patterns of the olivine samples : (**A**) as received , (**B**) after KEMS up to 2084 K in a Mo Knudsen cell (**C**) after KEMS up to 1850 K in a Mo Knudsen cell (**D**) after KEMS up 2079 K in an Ir Knudsen cell.

Chemical composition of the olivine powder samples $Fo_{93}Fa_7$ before and after KEMS up to 2084 K.

	Wt (%)			
Element	Sample as	After KEMS in a	After KEMS in a Ir	
	received ^a	Mo cell	cell	
Al	0.0120(6)	0.016(6)	0.2(1)	
Ca	0.035(2)	0.009(2)	0.04(2)	
Со	0.0120(6)	0.003(2)	0.004(3)	
Cr	0.052(3)	0.035(4)	0.06(1)	
Fe	5.01(3)	0.006(3)	0.93(3)	
Mg	30(2)	35.0(1)	34(1)	
Mn	0.075(4)	0.003(1)	0.031(3)	
Na	0.0080(4)	-	-	
Ni	0.27(1)	0.005(3)	0.006(3)	
Sc	0.0040(2)	-	-	
Si	20(1)	19.3(1)	21.8(8)	
Mo	0	0.04(2)	0	
Ir	0	0	0.06(3)	

Olivine – Impurities and Container Issues

XRD patterns of the olivine samples : (A) green sand from Hawaii, (B) after KEMS up to 1850 K in a Mo Knudsen cell (C) after KEMS up 2079 K in an Ir Knudsen cell.

Side view (cross-section) of the Mo Knudsen cell containing the olivine sample heat treated up to 2084 K.

www.nasa.gov

XRD Patterns (Rietveld Refinement) and Chemical Analysis

Element	Wt (%)			
	Sample as	Before KEMS	After KEMS in a Ir	
	received ^a	"Heat treated"	cell	
Al	0.0120(6)	0.018(9)	0.021(1)	
Ca	0.035(2)	0.027(1)	0.028(1)	
Со	0.0120(6)	0.0120(8)	0.005(3)	
Cr	0.052(3)	0.015(1)	0.012(6)	
Fe	5.01(3)	3.6(2)	2.94(1)	
Mg	30(2)	30(2)	32(2)	
Mn	0.075(4)	0.073(4)	0.068(3)	
Na	0.0080(4)	0	0	
Ni	0.27(1)	0.10(1)	0.020(1)	
Sc	0.0040(2)	0	0	
Si	20(1)	17(1)	17(1)	

Sample after KEMS (below the melting point)

Complete van't Hoff Plot

Temperature dependence of ion intensity ratios of Mg^+ , N. L. Bowen and J. F. Schairer, Am. J. Sci. 29, 151-171 (1935). Fe⁺, SiO⁺, O⁺ and O₂⁺ in the olivine sample.

At 16.5 eV - low energy minimize O₂ dissociation!

Issues with KEMS Thermodynamic Measurements of Olivine

- Find high melting, 'inert' container material
 - Silicates are very reactive
 - No inert materials at high temperatures!
 - Mo very reactive
 - Pt melts
 - Ir—less reactive, but still issues with some forms of Ir above mp of olivine
- Measuring O₂, O
 - Separate from background—good pumping, use shutter
 - Low ionizing electron energy

Want $O_2 + e^- = O_2^+ + 2e^-$ Avoid $O_2 + e^- = O + O^+ + 2e^-$

- Trade-off—low ionizing electron energy gives weaker signals
- Need thermodynamically defined system
 - MgO + Olivine or SiO₂ + Olivine or FeO + Olivine
 - How to measure FeO as a reference?

Initial Data – MgO as a Reference Material

Raw Data

Keq from the partial pressures of Mg(g) and $O_2(g)$

Plan to get data for SiO₂, FeO reference material data

Thermodynamic Activities in Olivine - $(Fe_xMg_{1-x})_2SiO_4$ This Olivine Appears to have Excess SiO₂

$$MO_{(\text{solution, a<1})} = M_{(g)} + 1/2O_{2(g)} \qquad K_{p} = \frac{P_{M} [P_{O_{2}}]^{1/2}}{a_{FeO}}$$

Fe, Mg or Si
$$a_{MO} = \frac{P_{M} [P_{O_{2}}]^{1/2}}{P_{M}^{o} [P_{O_{2}}^{o}]^{1/2}}$$

From FactSage^{*}or measured by KEMS

Computational Modeling of Olivine: Use FactSage Code with Sublattice model for Olivine

Two phase region

- Use excess MgO—set a(MgO) = 1
- Measure a(SiO₂), a(FeO)
 - Need to determine how to measure a(FeO)—reference as (Fe/FeO) or (FeO/Fe₃O₄)?

Summary

Previous Results presented on August 2014

- Secondary phases of the olivine sample were removed at temperatures > 1060 °C.
- Mo and Re cell reacts with olivine sample. Ir must be used
- The main vapor species of the olivine sample are Fe⁺, SiO⁺, O₂⁺, O⁺ and Mg⁺ following this order of vaporization.
- The melting point of the olivine sample was determined by the ion intensity discontinuity to be 1805 °C.
- Temperature dependence of partial pressures of the species were determined.

New Results

- Temperature dependence of the activity of MgO was determined.
- Method developed for O₂, O measurements
- Extending methods to obtain consistent solution thermodynamic data for olivine

Next Steps

• KEMS measurements of SiO₂, Fe₂O₃-FeO or FeO/Fe and MgO-Olivine