"I bet a fun thing would be to go way back in time to where there was going to be an eclipse and tell the cave men, "If I have come to destroy you, may the sun be blotted out from the sky." Just then the eclipse would start, and they'd probably try to kill you or something, but then you could explain about the rotation of the moon and all, and everyone would get a good laugh." Jack Handy quotes

You will want to have a calculator handy for the remainder of this course.

Finding exoplanets: 4 methods. 1) Doppler (radial velocity) wobble
2) Transits: far and away have found the most! 3) Microlensing 4) Direct imaging

We only need 2 (or 3) for our solar system (Terrestrial and Gas Giant), but exoplanets need more

Hot/warm Jupiters
Hot/warm Neptunes
SuperEarths
Mini-Neptunes

How do other solar systems stack up to the theory of how our solar system formed?

We really have not seen a solar system like ours, yet.

But ours is very hard to detect with our current technology.

If there are Jupiter-like planets in short orbits, well within the ice line, how did they form?

Planetary migration

Planetary migration:

Occurred in our solar system too.

A planet orbiting 2 stars.
(Artists
conception. They all are!)

2 stars; but the planet only orbits one.

A planet orbiting 1 star, which itself orbits 2 other stars.

Four stars!

Potentially Habitable Exoplanets

Kepler 362 b

Kepler 289 b

GJ 682 c

GJ 667C e

Kepler 39 b

Kepler 284 c

PSR 125712 c

Kepler 140 c
Kepler 300 c

Kepler 131 b

Kepler 81 d

Kepler 259 c

Kepler 309 c

Kepler 342 d

Kepler 347 c

$$
3 \mathrm{c}
$$

Kepler-149 c

Kepler 371 c

HD 20794 c

Kepler 306 e

Kepler 306 d

Kepler-195

Kepler-149 c Kepler 390 c

Kepler 386 c

Kepler 328 b

Kepler 299 e

Kepler 62 d

Kepler 332 d

Kepler-401 c

Kepler 52 d Kepler 136 b

Kepler 167 c

Kepler 75 b
HD 204313 c

Sweeps 11

Kepler 75 b

Kepler 372 d

It is estimated there are 67-134 million Earth-like planets in our galaxy alone.
There are over 100 billion galaxies in our Universe.

Within 10pc (33.6ly) there are 259 star systems. It is estimated there are 132-160 Earth-like planets where liquid water could exist 6-9 of these around Sun-like stars.

It is estimated that
$\sim 11 \%$ of all Sun-like
stars have such planets.

Take aways

* Most stars have planets. Planets outnumber stars. * Most planets are between Earth and Neptune in size- we have no such planets in our solar system. * Most planets detected orbit closer to their stars than in our solar system. BUT we are BEST at finding this type. * Why are they so close? We think they migrated (slowly moved) there after forming farther out. * Only the 'direct imaging' method sees the planets, the rest only see the effect of planets on stars.
* Planets are in systems we never imagined they would be. Planets have a LOT more variety then we thought. * No solar systems like ours yet, but ability to detect them is an issue.

How do you think you did on the test?

A)
B)
C)
D)
E) No idea at all.
F)

You will want to bring a calculator to class. This next part is math-rich, but we will do many sample problems in class.

Next section: Light.

Time for a completely new topic,

 Stars!
Stars do not all appear the same

We want to know:

- How hot are stars?
- How BIG are stars (size)?
- How massive are stars?
- What are stars made of?
- How far away are stars?
- Are they in motion?
- How much energy do stars emit?
- Where does that energy come from?

Spectrum: spreading light out into a rainbow.

A spectrum is light spread out into its constituent components.

The nature of light: it is both a particle and a wave!

The wavelength tells us the energy that each photon (piece of light) has.

$$
E=1240 / \lambda(\lambda \text { in } n m)
$$

Blue light has more energy (is hotter) than red light.

Temperature Scales

400	500	530	600	850	100
					nanometers
400 nm					700 nm
more energy		2			less energy

electromagnetic spectrum

Take a spectrum (left) and measure the intensity (brightness) at each wavelength, and then make a graph (right)

Temperatures given in Kelvins $\mathrm{T}=2.9 \times 10^{6} / \lambda_{\max }$ for λ in nm .

Stefan-Boltzmann Law

- Can determine energy per square meter from the temperature.
$-\mathrm{E} / \mathrm{m}^{2}=\sigma \mathrm{T}^{4}$
- Where $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$ so $\mathrm{E} / \mathrm{m}^{2}=\left(5.67 \mathrm{x} 10^{-8}\right) \mathrm{T}^{4}$

Example: How could you determine how hot the Sun is?

