
Group

A1	Linet	Deire	Outinn	Innia	Daudrata	Dishusse
AL	Hunt	Paige	Quinn	Jamie	Devkota	Bishwash
AR	Prater	Zane	Fernandez	Elizabeth	Schott	Connor
BL	Smith	Jaihan	Fernandez	Corey	Thompson	Natalie
BR	Tlustos	Travis	White	Erin	Wood	Noelle
CL	DeMeyer	Lauren	Oconnor	McKenna	Burdette	Lily
CR	Gunalan	Vishnu	Shrimplin	Skylar	Morris	Riley
DL	Golovin	Anita	Pappageorg	eLauren	Mongillo	Hailie
DR	Lee	Tony	Gregory	Brinley	Beezley	Claire
EL	Tomczyk	Aaron	Ehardt	Bella	Adkins	Leo
ER	Desmond	Sarah	Aleman	David	Davis	Jackson
FL	Holtgrewe	Emily	McGeough	Natasha	Stringer	Jason
FR	Shell	Brookelynn	Green	Kailey	Ausler	Kiara
GL	Keeney	Alex	Takeuchi	Fuka	Brown	Tatianah
GR	Byrum	Faith	Evans	Hannah	Ziff	Caitlin
HL	Jones	Justice	Rosentreter	Riley	Tucker	Kali
HR	Swartz	Alicia	Barr	Abigail	Ashlin	Bradley

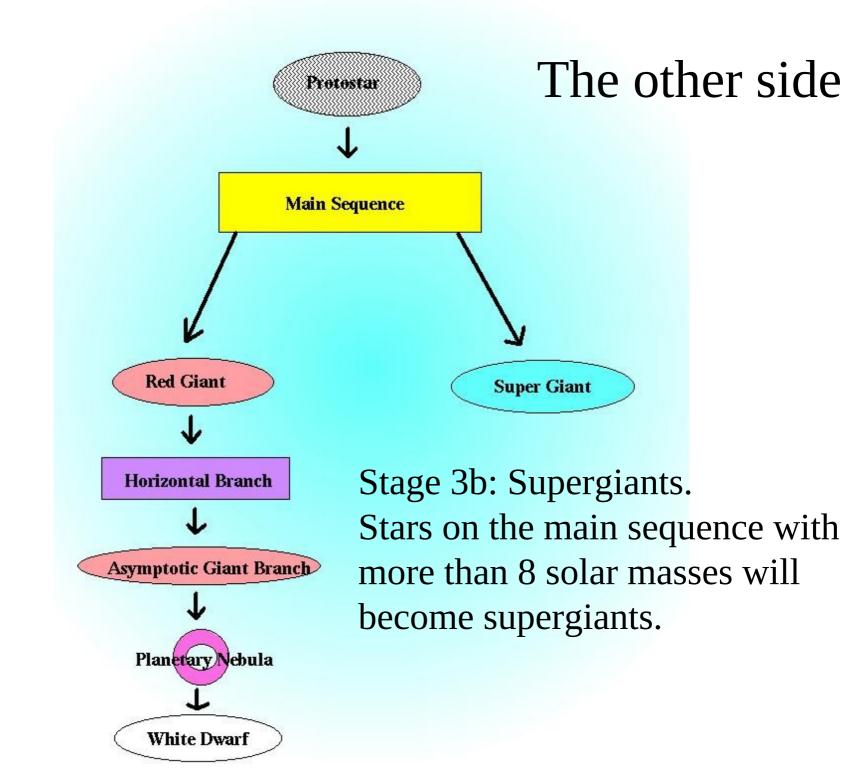
AL	Knight	Cassidy	Bourcier	Savannah	Pike	Alena
AR	Stirewalt	Robert	Ellis	Alexander	Roberts	Jay
BL	Stinnett	Nic	Hunter	Kris		
BR	Still	Martin	Price	Elijah		
CL	Kolath	Caroline	Petinaris	Joanna		
CR	Davis	Samantha	Brown	Quincy		
DL	Stiers	Alexis	Bayer	Caeden		
DR	Hunt	Taylor	Chabino	Conner		
EL	Yoss	Aaron	Czeschin	Kyle		
ER	Lambeth	Gabe	Cherukumilli	Shan		
FL	Ayers	Carley	McBurney	Sullivan		
FR	Bowe	Ava	Adams	Autumn		
GL	McPike	Aiden	Bradshaw	Jenny		
GR	Todd	Ana	Maune	Cole		
HL	Saucedo	Brithny	Sauceda	Emma		
HR	Coomes	Austin	Govero	Brady		

Test 2 on April 3 in class.. Sample Tests and study guide on the course web page now. Group project 1 is due on April 1.

Important points:

Most stars end up as white dwarfs. About 60% the mass of the Sun but the radius (size) of the Earth.

Support is electron degeneracy pressure.


They generate **no** energy, and over time cool to lower and lower temperature.

A few white dwarfs in binaries will get enough mass to supernova

Enrichment

Takeaway: low-mass stars can make elements up to Pb and this is recycled into the galaxy during the planetary nebula phase.

All the nitrogen and oxygen in our atmosphere, that you're breathing right now, was made within stars!

Supergiants

The cores of more massive stars are already hotter.

As they have more mass, they get more energy from gravity without having to change their size much.

Supergiants are able to begin converting He to C/O very soon after exhausting H in their core.

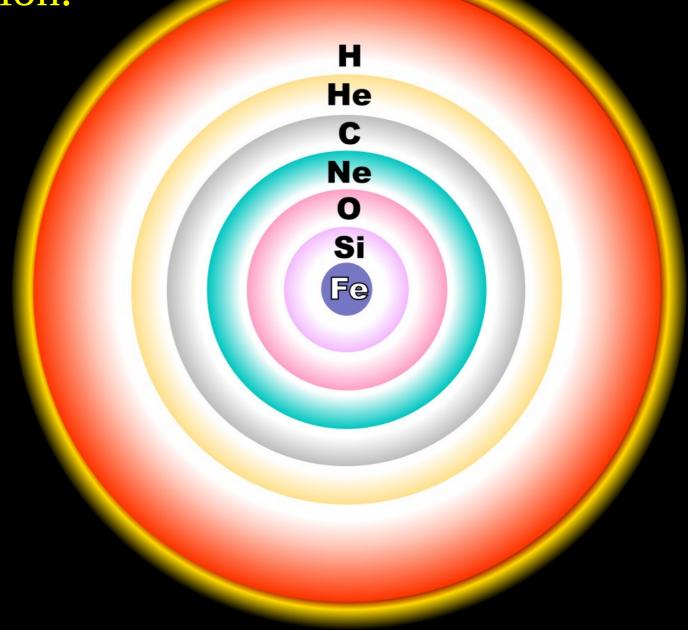
Supergiants

The cores of more massive stars are already hotter.

As they have more mass, they get more energy from gravity without having to change their size much.

Supergiants are able to begin converting He to C/O very soon after exhausting H in their core.

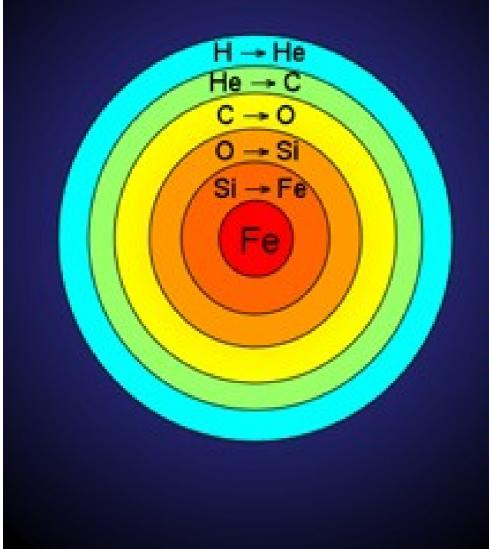
But their cores are hotter than on the main sequence, so the envelope expands.


Supergiants

Supergiants are able to begin converting He to C/O very soon after exhausting H in their core.

When that's depleted, they convert C to O, Ne, Na and Mg When that's depleted, they convert O to Mg, S, P, and Si Then Si to Co, Fe, and Ni

Between each nuclear burning stage, the shell expands and the core contracts, heating up before it can burn the next fuel.


Late structure of a supergiant: Like an onion.

Fuel Sources

Sour	ceTemp	Density	Energy out
H	4 million K	10-100 g/cc	16.55 MeV
He	100 million	K1,000 to 1 million	g/c0.61 MeV
С	600 million	K0.1 to 100 million	g/c0.54 MeV
0	1 billion K	1 billion g/cc	0.3 MeV
Si	3 billion K	3 billion g/cc	0.18 MeV

Supergiant Fusion Timescales

For a 25 solar mass star:

Stage	Duration
H → He	7x10 ⁶ years
He → C	7x10 ⁵ years
C→O	600 years
O → Si	6 months
Si → Fe	1 day
Core Collapse	1/4 second

So what happens when you've built up an Iron core? What can Iron do to support itself? Time to do HW3. Put everything away except your homework and your phone with the clicker app open. No talking.

Put the row letter where you want it passed back next Monday.

1) About what fraction of stars have planets?

A) Nearly 0%
B) 10%
C) 50%
D) 90%

2) Which star is the coolest?

A) Yellow
B) Red
C) Orange
D) Violet
E) Blue

3) What is the temperature of a star with a peak in its spectrum at 250 nm?

A) 250 K B) 5,500 K C) 11,600 K D) 42,300 K 4) A cloud forms four stars. Which star is the hottest?

A) $12 M_{Sun}$ B) $3 M_{Sun}$ C) $0.8 M_{Sun}$ D) $0.4 M_{sun}$ E) They are all the same. 5) A cloud forms four stars. Which star is the faintest?

A) $12 M_{Sun}$ B) $3 M_{Sun}$ C) $0.8 M_{Sun}$ D) $0.4 M_{sun}$ E) They are all the same.

6) A cloud forms four stars. What is the total luminosity of all 4 stars?

A) 47 L_{Sun} B) 312 L_{Sun} C) 2312 L_{Sun} D) 6033 L_{sun} E) 4L_{sun}. 7) A cloud forms four stars. After 3 billion years how many are still on the main sequence?

A) 4
B) 3
C) 2
D) 1
E) 0

8) A cloud forms four stars. After 15 billion years how many are still on the main sequence?

A) 4
B) 3
C) 2
D) 1
E) 0

9) Why must stars evolve?

A) They don't.
 B) To change color.
 C) Because stars are moving (in motion).
 D) Stars are using fuel which is limited.

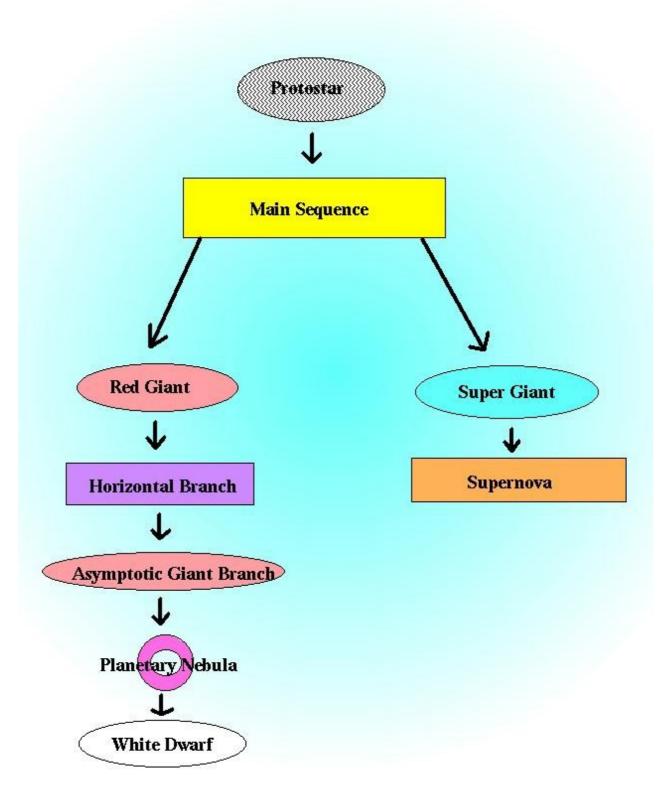
10) What is the source of energy for our Sun?

A) Gravity B) Fusion $H \rightarrow He$ C) Nothing, it needs nothing. D) Fusion He \rightarrow C/O E) Luminosity 11) Red star and blue star in a binary. What else do I know about these two stars?

A) The blue star is hotter.
B) They are at the same distance.
C) The red star is larger (the blue star is smaller).
D) They started at the same time.

E) All of the above are true.

Bonus questions 12) How will our Sun end?


A) ExplodeB) Shine foreverC) White dwarfD) Supergiant

Be sure your name and row letter are on it.

Pass it to your right, please.

So what happens when you've built up an Iron core? What can Iron do to support itself?

NOTHING!

