

Acknowledgements

Exoplanet Atmospheres and Interiors

- B. Benneke (Atmospheric Retrieval)
- R. Hu (Photochemistry)
- S. Messenger(Biosignature Gases)
- J. De Wit (Planet Atmospheres)
- W. Bains (Biosignature Gases)
- B. Demory (Observations)
- V. Stamenkovic (Planet Interiors)
- A. Zsom (Clouds, atmospheres)

Space Engineering

C. Pong (ADCS)

M. Smith (Optics)

M. Knapp (Systems/Camera)

J. Nash (Avionics)

A. Babuscia (Comm.)

I. Sergeev (Avionics)

B. Corbin (Structures/Systems)

N. Inamdar (Structuresl)

Thank you to my past and present students and postdocs Supported by MIT, NASA (HQ, JPL), Draper Lab, Lincoln Lab

$N = N_* F_Q F_{HZ} F_O F_L F_S$

- N number of planets with detectable biosignature gases
- N_* number of stars within the sample
- F_o fraction of quiet stars
- F_{HZ} fraction with rocky planets in the HZ
- F_o fraction of observable systems
- F_{I} fraction with life
- F_S fraction with detectable spectroscopic signatures

A "revised" Drake Equation For any star types, any well defined survey

$N = N_* F_Q F_{HZ} F_O F_L F_S$

N number of planets with detectable biosignature gases

 N_* number of M stars with I < 13

 F_o fraction of quiet M stars

 F_{HZ} fraction with rocky planets in the HZ

 F_o fraction of observable=transiting systems observable with JWST

 F_{I} fraction with life

 $F_{\rm S}$ fraction with detectable spectroscopic signatures

For M stars: TESS/JWST

N_* Number of Stars

$$N = N_* F_Q F_{HZ} F_O F_L F_S$$

Term	M Stars
N_*	30,000

*N*_∗ should be those accessible to TESS and for planet-hosting stars accessible to atmosphere followup with *JWST*

- / mag < 13
- 30,000 to 50,000 stars
- Bochanski 2007; Reid and Hawley 2006

$F_{\rm\scriptscriptstyle HZ}$ Fraction of Stars in the HZ

$$N = N_* F_Q F_{HZ} F_O F_L F_S$$

Term	M Stars
N *	30,000
F_Q	(0.2)
F_{HZ}	0.15

 F_{HZ} for M stars comes from Kepler data from Dressing and Charbonneau 2013. The quiet star fraction is folded in here

F_{O} Fraction of Observable Systems

$$N = N_* F_Q F_{HZ} F_O F_L F_S$$

Term	M Stars
N *	30,000
F_Q	(0.2)
F_{HZ}	0.15
F_{O}	0.01 x 0.1

 $F_{\mathcal{O}}$ here means fraction of planets that transit and that are observable by JWST. Transiting planets are required for JWST atmosphere followup for small planets in the HZ

F_L Fraction with Life

$$N = N_* F_Q F_{HZ} F_O F_L F_S$$

Term	M Stars
N_*	30,000
F_Q	(0.2)
F_{HZ}	0.15
F_O	0.001
F_L	1

 F_L is purely speculative

Fraction with Detectable Spectrscopic Signature $N = N_* F_Q F_{HZ} F_O F_L F_S$

$$N = N_* F_Q F_{HZ} F_O F_L F_S$$

Term	M Stars
N*	30,000
F_Q	(0.2)
F _Q F _{HZ}	0.15
F_O	0.001
F_L	1
F_{S}	0.5
F _S	2

Does life generate a spectroscopic signature?

We appear stuck with a terracentric view of biosignature gases

"Nothing would be more tragic in the ... exploration of space than to encounter alien life and fail to recognize it" NRC report 2007

The Habitable Zone

Seager, Science 2013

Inner edge: Zsom, Seager, de Wit, arXiv: 1304.3714

Hypothesis:
biosignature
gas to be

Biomass Model as a Plausibility Check for Biosignature Gases

Step 3: Determine related biomass $CO_2 + H_2 \longrightarrow CH_4 + H_2O$ $\Delta G = \Delta G^{0} - RTln(Q_{t})$ $\Sigma_B = \Delta G \left[\frac{F_S}{P_{m_e}} \right]$ **Thermodynamic** model predicts necessary biomass Is biomass needed to generate a detectable spectrum a

plausible biomass?

Biomass Model Estimate

$$P_{m_e} \approx \Delta G R$$

- The minimum maintenance energy rate [kJ/g/s]
- Empirically measured in the lab
- Tijuis et al. 1993. $P_{m_e} = A \exp \left[\frac{-E_A}{RT} \right]$

- Gibbs Free energy yield [kJ/mole]
- Gas production rate [mole/g/s]
- Measured for lab cultures

Biomass Model Estimate

$$P_{m_e} \approx \Delta G R$$

$$F_{source} \approx R \Sigma_B$$

$$\Sigma_{B} \approx \frac{\Delta G F_{source}}{P_{m_{e}}}$$

R [mole/g/s] can be broken down into relevant quantities

F_{source}: biosignature surface flux [mole/m²/s] would be derived from future exoplanet observations, considering photochemistry

 Σ_B : biomass surface density [g/m²]

Cold Haber World: NH₃

- Cold Haber World 3H₂ + N₂ → 2NH₃
 - $\rm NH_3$ as a biosignature gas on an 90% $\rm H_2$ -10% $\rm N_2$ planet with life enzymatically catalyzing the $\rm N_2$ bond
 - NH₃ has a short lifetime and requires a surface flux for production in thin atmospheres
 - Detectable NH₃ around a quiet M star with 3.3 ppm, $F_{source} = 2 \times 10^{13}$ molecules/m²/s, ΔG and $\Sigma_B \sim 3 \times 10^{-5}$ g/m²

Figure shows synthetic transmission spectra for a 10 Earth mass, 1.75 Earth radius planet orbiting a quiet M5 dwarf star Seager et al. submitted to ApJ

Biosignature Gases in H₂ Atmospheres

Proof of concept that biosignature gases can accumulate in an H₂-rich atmosphere

H is the dominant reactive species (akin to OH)

The low UV environments of quiet M stars are most favorable

Examples studied shown in Fig.

Seager, Bains, Hu submitted to ApJ

$$N = N_* F_Q F_{HZ} F_O F_L F_S$$

Term	M Stars
N_*	30,000
F_Q	(0.2)
F _Q F _{HZ}	0.15
F_O	0.001
F_L	1
F _S	0.5
N	2

"It's not going to be easy but we can dream"

Dave Latham

