Algebra Review


Rules

Examples

Addition and Subtraction

$X+C=Y$: To solve for X, (C and Y are just numbers), we want it alone on one side. But we have a $C$ added on. By rules 1& 2, we subtract it from both sides.

\begin{displaymath}X+C-C=Y-C\quad\rightarrow\quad X=Y-C\end{displaymath}


\begin{displaymath}x+2=3\quad\rightarrow\quad x+2-2=3-2\quad\rightarrow\quad x=1\end{displaymath}

$X-C=Y$: To solve for X, we want it alone on one side. But we have a C being subtracted, so by rules 1 & 2, we add it to both sdies.

\begin{displaymath}X-C+C=Y-C\quad\rightarrow\quad X=Y+C\end{displaymath}


\begin{displaymath}x-2=3\quad\rightarrow\quad x-2+2=3+2\quad\rightarrow\quad x=5\end{displaymath}

Multiplication and Division

$XC=Y$: To solve for X, we want it alone on one side. But we have a C multiplied to it. To solve, we divide C from both sides (Rules 1& 3).

\begin{displaymath}\frac{XC}{C}=\frac{Y}{C}\quad\rightarrow\quad X=\frac{Y}{C}\end{displaymath}


\begin{displaymath}3x=12 \quad\rightarrow\quad \frac{3x}{3}=\frac{12}{3}
\quad\rightarrow\quad x=4\end{displaymath}

$\frac{X}{C}=Y$: To solve for X, we want it alone on one side. But we have a C dividing it. To solve, we multiply both sides by C (Rules 1 & 3)

\begin{displaymath}\frac{X\cdot C}{C}=Y\cdot C\quad\rightarrow\quad X=Y\cdot C\end{displaymath}


\begin{displaymath}\frac{x}{6}=12\quad\rightarrow\quad \frac{x\cdot 6}{6}=12\cdot 6
\quad\rightarrow\quad x=72\end{displaymath}

Exponents and Roots

$X^c=Y$: To solve for X, take the $c^{th}$ root of both sides. Rules 1 & 4.

\begin{displaymath}\sqrt[c]{X^c}=\sqrt[c]{Y}\quad\rightarrow\quad X=\sqrt[c]{Y}\end{displaymath}



$\sqrt[c]{X}=Y$: To solve for X, raise both sides to the power of c. Rules 1 & 4.

\begin{displaymath}\left(\sqrt[c]{X}\right)^c=Y^c\quad\rightarrow\quad X=Y^c\end{displaymath}


\begin{displaymath}\sqrt[3]{X}=4\quad\rightarrow\quad X=4^3\quad\rightarrow\quad X=64\end{displaymath}

Combinations

$X^c+D=Y$: To solve for X, use rules 6, 4, 2, & 1.

\begin{displaymath}X^c+D-D=Y-D\quad\rightarrow\quad X^c=Y-D\quad\rightarrow\quad X=
\sqrt[c]{Y-D}\end{displaymath}


\begin{displaymath}X^2+3=7\quad\rightarrow\quad X^2=4\quad\rightarrow\quad X=\sqrt{4}
\quad\rightarrow\quad X=2\end{displaymath}

$\frac{X}{C}-D=Y$: To solve for X, use rules 1, 2, 3, & 5.

\begin{displaymath}\frac{X}{C}-D+D=Y+D\quad\rightarrow\quad \frac{X\cdot C}{C}=C\left( Y+D\right)
\quad\rightarrow\quad X=C\left( Y+D\right)\end{displaymath}



Exponentials

If a power is raised to another power, multiply the powers.

\begin{displaymath}\left( X^c\right)^d\quad\rightarrow\quad X^{c\dot d}\end{displaymath}


\begin{displaymath}\left( 10^2\right)^3\quad\rightarrow\quad 10^6\end{displaymath}

If a root is taken of a number raised to a power, divide the power by the root.

\begin{displaymath}\sqrt[d]{X^c}\quad\rightarrow\quad X^{\frac{c}{d}}\end{displaymath}


\begin{displaymath}\sqrt[3]{10^6}\quad\rightarrow\quad 10^{\frac{6}{3}}\quad\rightarrow\quad
10^2=100\end{displaymath}


\begin{displaymath}\sqrt[5]{X^25}\quad\rightarrow\quad X^{\frac{25}{5}}\quad\rightarrow\quad
X^5\end{displaymath}

Add powers for multiplication, subtract powers for division.

\begin{displaymath}X^c\cdot X^d\quad\rightarrow\quad X^{c+d}\quad\quad 10^3\cdot 10^5
\quad\rightarrow\quad 10^{3+5}\quad\rightarrow\quad 10^8\end{displaymath}


\begin{displaymath}\frac{X^c}{X^d}\quad\rightarrow\quad X^{c-d}\quad\quad \frac{...
...{5^2}
\quad\rightarrow\quad 5^{4-2}\quad\rightarrow\quad 5^2=25\end{displaymath}